Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > vtocl3g | Structured version Visualization version GIF version |
Description: Implicit substitution of a class for a setvar variable. Version of vtocl3gf 3509 with disjoint variable conditions instead of nonfreeness hypotheses, requiring fewer axioms. (Contributed by Gino Giotto, 3-Oct-2024.) |
Ref | Expression |
---|---|
vtocl3g.1 | ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) |
vtocl3g.2 | ⊢ (𝑦 = 𝐵 → (𝜓 ↔ 𝜒)) |
vtocl3g.3 | ⊢ (𝑧 = 𝐶 → (𝜒 ↔ 𝜃)) |
vtocl3g.4 | ⊢ 𝜑 |
Ref | Expression |
---|---|
vtocl3g | ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐶 ∈ 𝑋) → 𝜃) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elex 3450 | . . 3 ⊢ (𝐴 ∈ 𝑉 → 𝐴 ∈ V) | |
2 | vtocl3g.2 | . . . . 5 ⊢ (𝑦 = 𝐵 → (𝜓 ↔ 𝜒)) | |
3 | 2 | imbi2d 341 | . . . 4 ⊢ (𝑦 = 𝐵 → ((𝐴 ∈ V → 𝜓) ↔ (𝐴 ∈ V → 𝜒))) |
4 | vtocl3g.3 | . . . . 5 ⊢ (𝑧 = 𝐶 → (𝜒 ↔ 𝜃)) | |
5 | 4 | imbi2d 341 | . . . 4 ⊢ (𝑧 = 𝐶 → ((𝐴 ∈ V → 𝜒) ↔ (𝐴 ∈ V → 𝜃))) |
6 | vtocl3g.1 | . . . . 5 ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) | |
7 | vtocl3g.4 | . . . . 5 ⊢ 𝜑 | |
8 | 6, 7 | vtoclg 3505 | . . . 4 ⊢ (𝐴 ∈ V → 𝜓) |
9 | 3, 5, 8 | vtocl2g 3510 | . . 3 ⊢ ((𝐵 ∈ 𝑊 ∧ 𝐶 ∈ 𝑋) → (𝐴 ∈ V → 𝜃)) |
10 | 1, 9 | mpan9 507 | . 2 ⊢ ((𝐴 ∈ 𝑉 ∧ (𝐵 ∈ 𝑊 ∧ 𝐶 ∈ 𝑋)) → 𝜃) |
11 | 10 | 3impb 1114 | 1 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐶 ∈ 𝑋) → 𝜃) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 396 ∧ w3a 1086 = wceq 1539 ∈ wcel 2106 Vcvv 3432 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 397 df-3an 1088 df-tru 1542 df-ex 1783 df-sb 2068 df-clab 2716 df-cleq 2730 df-clel 2816 df-v 3434 |
This theorem is referenced by: vtocl3ga 3517 |
Copyright terms: Public domain | W3C validator |