| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > vtocl3g | Structured version Visualization version GIF version | ||
| Description: Implicit substitution of a class for a setvar variable. Version of vtocl3gf 3557 with disjoint variable conditions instead of nonfreeness hypotheses, requiring fewer axioms. (Contributed by GG, 3-Oct-2024.) |
| Ref | Expression |
|---|---|
| vtocl3g.1 | ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) |
| vtocl3g.2 | ⊢ (𝑦 = 𝐵 → (𝜓 ↔ 𝜒)) |
| vtocl3g.3 | ⊢ (𝑧 = 𝐶 → (𝜒 ↔ 𝜃)) |
| vtocl3g.4 | ⊢ 𝜑 |
| Ref | Expression |
|---|---|
| vtocl3g | ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐶 ∈ 𝑋) → 𝜃) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elex 3485 | . . 3 ⊢ (𝐴 ∈ 𝑉 → 𝐴 ∈ V) | |
| 2 | vtocl3g.2 | . . . . 5 ⊢ (𝑦 = 𝐵 → (𝜓 ↔ 𝜒)) | |
| 3 | 2 | imbi2d 340 | . . . 4 ⊢ (𝑦 = 𝐵 → ((𝐴 ∈ V → 𝜓) ↔ (𝐴 ∈ V → 𝜒))) |
| 4 | vtocl3g.3 | . . . . 5 ⊢ (𝑧 = 𝐶 → (𝜒 ↔ 𝜃)) | |
| 5 | 4 | imbi2d 340 | . . . 4 ⊢ (𝑧 = 𝐶 → ((𝐴 ∈ V → 𝜒) ↔ (𝐴 ∈ V → 𝜃))) |
| 6 | vtocl3g.1 | . . . . 5 ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) | |
| 7 | vtocl3g.4 | . . . . 5 ⊢ 𝜑 | |
| 8 | 6, 7 | vtoclg 3538 | . . . 4 ⊢ (𝐴 ∈ V → 𝜓) |
| 9 | 3, 5, 8 | vtocl2g 3558 | . . 3 ⊢ ((𝐵 ∈ 𝑊 ∧ 𝐶 ∈ 𝑋) → (𝐴 ∈ V → 𝜃)) |
| 10 | 1, 9 | mpan9 506 | . 2 ⊢ ((𝐴 ∈ 𝑉 ∧ (𝐵 ∈ 𝑊 ∧ 𝐶 ∈ 𝑋)) → 𝜃) |
| 11 | 10 | 3impb 1114 | 1 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐶 ∈ 𝑋) → 𝜃) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 Vcvv 3464 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2708 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1088 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2715 df-cleq 2728 df-clel 2810 df-v 3466 |
| This theorem is referenced by: vtocl3gaOLD 3568 |
| Copyright terms: Public domain | W3C validator |