|   | Metamath Proof Explorer | < Previous  
      Next > Nearby theorems | |
| Mirrors > Home > MPE Home > Th. List > vtocl3g | Structured version Visualization version GIF version | ||
| Description: Implicit substitution of a class for a setvar variable. Version of vtocl3gf 3572 with disjoint variable conditions instead of nonfreeness hypotheses, requiring fewer axioms. (Contributed by GG, 3-Oct-2024.) | 
| Ref | Expression | 
|---|---|
| vtocl3g.1 | ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) | 
| vtocl3g.2 | ⊢ (𝑦 = 𝐵 → (𝜓 ↔ 𝜒)) | 
| vtocl3g.3 | ⊢ (𝑧 = 𝐶 → (𝜒 ↔ 𝜃)) | 
| vtocl3g.4 | ⊢ 𝜑 | 
| Ref | Expression | 
|---|---|
| vtocl3g | ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐶 ∈ 𝑋) → 𝜃) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | elex 3500 | . . 3 ⊢ (𝐴 ∈ 𝑉 → 𝐴 ∈ V) | |
| 2 | vtocl3g.2 | . . . . 5 ⊢ (𝑦 = 𝐵 → (𝜓 ↔ 𝜒)) | |
| 3 | 2 | imbi2d 340 | . . . 4 ⊢ (𝑦 = 𝐵 → ((𝐴 ∈ V → 𝜓) ↔ (𝐴 ∈ V → 𝜒))) | 
| 4 | vtocl3g.3 | . . . . 5 ⊢ (𝑧 = 𝐶 → (𝜒 ↔ 𝜃)) | |
| 5 | 4 | imbi2d 340 | . . . 4 ⊢ (𝑧 = 𝐶 → ((𝐴 ∈ V → 𝜒) ↔ (𝐴 ∈ V → 𝜃))) | 
| 6 | vtocl3g.1 | . . . . 5 ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) | |
| 7 | vtocl3g.4 | . . . . 5 ⊢ 𝜑 | |
| 8 | 6, 7 | vtoclg 3553 | . . . 4 ⊢ (𝐴 ∈ V → 𝜓) | 
| 9 | 3, 5, 8 | vtocl2g 3573 | . . 3 ⊢ ((𝐵 ∈ 𝑊 ∧ 𝐶 ∈ 𝑋) → (𝐴 ∈ V → 𝜃)) | 
| 10 | 1, 9 | mpan9 506 | . 2 ⊢ ((𝐴 ∈ 𝑉 ∧ (𝐵 ∈ 𝑊 ∧ 𝐶 ∈ 𝑋)) → 𝜃) | 
| 11 | 10 | 3impb 1114 | 1 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐶 ∈ 𝑋) → 𝜃) | 
| Colors of variables: wff setvar class | 
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∧ w3a 1086 = wceq 1539 ∈ wcel 2107 Vcvv 3479 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-ext 2707 | 
| This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1088 df-tru 1542 df-ex 1779 df-sb 2064 df-clab 2714 df-cleq 2728 df-clel 2815 df-v 3481 | 
| This theorem is referenced by: vtocl3gaOLD 3583 | 
| Copyright terms: Public domain | W3C validator |