MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  vtocl3g Structured version   Visualization version   GIF version

Theorem vtocl3g 3587
Description: Implicit substitution of a class for a setvar variable. Version of vtocl3gf 3585 with disjoint variable conditions instead of nonfreeness hypotheses, requiring fewer axioms. (Contributed by GG, 3-Oct-2024.)
Hypotheses
Ref Expression
vtocl3g.1 (𝑥 = 𝐴 → (𝜑𝜓))
vtocl3g.2 (𝑦 = 𝐵 → (𝜓𝜒))
vtocl3g.3 (𝑧 = 𝐶 → (𝜒𝜃))
vtocl3g.4 𝜑
Assertion
Ref Expression
vtocl3g ((𝐴𝑉𝐵𝑊𝐶𝑋) → 𝜃)
Distinct variable groups:   𝑥,𝐴   𝑦,𝐴   𝑧,𝐴   𝑦,𝐵   𝑧,𝐵   𝑧,𝐶   𝜓,𝑥   𝜒,𝑦   𝜃,𝑧
Allowed substitution hints:   𝜑(𝑥,𝑦,𝑧)   𝜓(𝑦,𝑧)   𝜒(𝑥,𝑧)   𝜃(𝑥,𝑦)   𝐵(𝑥)   𝐶(𝑥,𝑦)   𝑉(𝑥,𝑦,𝑧)   𝑊(𝑥,𝑦,𝑧)   𝑋(𝑥,𝑦,𝑧)

Proof of Theorem vtocl3g
StepHypRef Expression
1 elex 3509 . . 3 (𝐴𝑉𝐴 ∈ V)
2 vtocl3g.2 . . . . 5 (𝑦 = 𝐵 → (𝜓𝜒))
32imbi2d 340 . . . 4 (𝑦 = 𝐵 → ((𝐴 ∈ V → 𝜓) ↔ (𝐴 ∈ V → 𝜒)))
4 vtocl3g.3 . . . . 5 (𝑧 = 𝐶 → (𝜒𝜃))
54imbi2d 340 . . . 4 (𝑧 = 𝐶 → ((𝐴 ∈ V → 𝜒) ↔ (𝐴 ∈ V → 𝜃)))
6 vtocl3g.1 . . . . 5 (𝑥 = 𝐴 → (𝜑𝜓))
7 vtocl3g.4 . . . . 5 𝜑
86, 7vtoclg 3566 . . . 4 (𝐴 ∈ V → 𝜓)
93, 5, 8vtocl2g 3586 . . 3 ((𝐵𝑊𝐶𝑋) → (𝐴 ∈ V → 𝜃))
101, 9mpan9 506 . 2 ((𝐴𝑉 ∧ (𝐵𝑊𝐶𝑋)) → 𝜃)
11103impb 1115 1 ((𝐴𝑉𝐵𝑊𝐶𝑋) → 𝜃)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1087   = wceq 1537  wcel 2108  Vcvv 3488
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-ext 2711
This theorem depends on definitions:  df-bi 207  df-an 396  df-3an 1089  df-tru 1540  df-ex 1778  df-sb 2065  df-clab 2718  df-cleq 2732  df-clel 2819  df-v 3490
This theorem is referenced by:  vtocl3gaOLD  3596
  Copyright terms: Public domain W3C validator