MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  vtocl3gf Structured version   Visualization version   GIF version

Theorem vtocl3gf 3499
Description: Implicit substitution of a class for a setvar variable. (Contributed by NM, 10-Aug-2013.) (Revised by Mario Carneiro, 10-Oct-2016.)
Hypotheses
Ref Expression
vtocl3gf.a 𝑥𝐴
vtocl3gf.b 𝑦𝐴
vtocl3gf.c 𝑧𝐴
vtocl3gf.d 𝑦𝐵
vtocl3gf.e 𝑧𝐵
vtocl3gf.f 𝑧𝐶
vtocl3gf.1 𝑥𝜓
vtocl3gf.2 𝑦𝜒
vtocl3gf.3 𝑧𝜃
vtocl3gf.4 (𝑥 = 𝐴 → (𝜑𝜓))
vtocl3gf.5 (𝑦 = 𝐵 → (𝜓𝜒))
vtocl3gf.6 (𝑧 = 𝐶 → (𝜒𝜃))
vtocl3gf.7 𝜑
Assertion
Ref Expression
vtocl3gf ((𝐴𝑉𝐵𝑊𝐶𝑋) → 𝜃)

Proof of Theorem vtocl3gf
StepHypRef Expression
1 elex 3440 . . 3 (𝐴𝑉𝐴 ∈ V)
2 vtocl3gf.d . . . 4 𝑦𝐵
3 vtocl3gf.e . . . 4 𝑧𝐵
4 vtocl3gf.f . . . 4 𝑧𝐶
5 vtocl3gf.b . . . . . 6 𝑦𝐴
65nfel1 2922 . . . . 5 𝑦 𝐴 ∈ V
7 vtocl3gf.2 . . . . 5 𝑦𝜒
86, 7nfim 1900 . . . 4 𝑦(𝐴 ∈ V → 𝜒)
9 vtocl3gf.c . . . . . 6 𝑧𝐴
109nfel1 2922 . . . . 5 𝑧 𝐴 ∈ V
11 vtocl3gf.3 . . . . 5 𝑧𝜃
1210, 11nfim 1900 . . . 4 𝑧(𝐴 ∈ V → 𝜃)
13 vtocl3gf.5 . . . . 5 (𝑦 = 𝐵 → (𝜓𝜒))
1413imbi2d 340 . . . 4 (𝑦 = 𝐵 → ((𝐴 ∈ V → 𝜓) ↔ (𝐴 ∈ V → 𝜒)))
15 vtocl3gf.6 . . . . 5 (𝑧 = 𝐶 → (𝜒𝜃))
1615imbi2d 340 . . . 4 (𝑧 = 𝐶 → ((𝐴 ∈ V → 𝜒) ↔ (𝐴 ∈ V → 𝜃)))
17 vtocl3gf.a . . . . 5 𝑥𝐴
18 vtocl3gf.1 . . . . 5 𝑥𝜓
19 vtocl3gf.4 . . . . 5 (𝑥 = 𝐴 → (𝜑𝜓))
20 vtocl3gf.7 . . . . 5 𝜑
2117, 18, 19, 20vtoclgf 3493 . . . 4 (𝐴 ∈ V → 𝜓)
222, 3, 4, 8, 12, 14, 16, 21vtocl2gf 3498 . . 3 ((𝐵𝑊𝐶𝑋) → (𝐴 ∈ V → 𝜃))
231, 22mpan9 506 . 2 ((𝐴𝑉 ∧ (𝐵𝑊𝐶𝑋)) → 𝜃)
24233impb 1113 1 ((𝐴𝑉𝐵𝑊𝐶𝑋) → 𝜃)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395  w3a 1085   = wceq 1539  wnf 1787  wcel 2108  wnfc 2886  Vcvv 3422
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-ex 1784  df-nf 1788  df-sb 2069  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-v 3424
This theorem is referenced by:  vtocl3gaf  3506
  Copyright terms: Public domain W3C validator