![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > vtocl3ga | Structured version Visualization version GIF version |
Description: Implicit substitution of 3 classes for 3 setvar variables. (Contributed by NM, 20-Aug-1995.) Reduce axiom usage. (Revised by GG, 3-Oct-2024.) (Proof shortened by Wolf Lammen, 31-May-2025.) |
Ref | Expression |
---|---|
vtocl3ga.1 | ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) |
vtocl3ga.2 | ⊢ (𝑦 = 𝐵 → (𝜓 ↔ 𝜒)) |
vtocl3ga.3 | ⊢ (𝑧 = 𝐶 → (𝜒 ↔ 𝜃)) |
vtocl3ga.4 | ⊢ ((𝑥 ∈ 𝐷 ∧ 𝑦 ∈ 𝑅 ∧ 𝑧 ∈ 𝑆) → 𝜑) |
Ref | Expression |
---|---|
vtocl3ga | ⊢ ((𝐴 ∈ 𝐷 ∧ 𝐵 ∈ 𝑅 ∧ 𝐶 ∈ 𝑆) → 𝜃) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | vtocl3ga.3 | . . . . 5 ⊢ (𝑧 = 𝐶 → (𝜒 ↔ 𝜃)) | |
2 | 1 | imbi2d 340 | . . . 4 ⊢ (𝑧 = 𝐶 → (((𝐴 ∈ 𝐷 ∧ 𝐵 ∈ 𝑅) → 𝜒) ↔ ((𝐴 ∈ 𝐷 ∧ 𝐵 ∈ 𝑅) → 𝜃))) |
3 | vtocl3ga.1 | . . . . . . 7 ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) | |
4 | 3 | imbi2d 340 | . . . . . 6 ⊢ (𝑥 = 𝐴 → ((𝑧 ∈ 𝑆 → 𝜑) ↔ (𝑧 ∈ 𝑆 → 𝜓))) |
5 | vtocl3ga.2 | . . . . . . 7 ⊢ (𝑦 = 𝐵 → (𝜓 ↔ 𝜒)) | |
6 | 5 | imbi2d 340 | . . . . . 6 ⊢ (𝑦 = 𝐵 → ((𝑧 ∈ 𝑆 → 𝜓) ↔ (𝑧 ∈ 𝑆 → 𝜒))) |
7 | vtocl3ga.4 | . . . . . . 7 ⊢ ((𝑥 ∈ 𝐷 ∧ 𝑦 ∈ 𝑅 ∧ 𝑧 ∈ 𝑆) → 𝜑) | |
8 | 7 | 3expia 1121 | . . . . . 6 ⊢ ((𝑥 ∈ 𝐷 ∧ 𝑦 ∈ 𝑅) → (𝑧 ∈ 𝑆 → 𝜑)) |
9 | 4, 6, 8 | vtocl2ga 3590 | . . . . 5 ⊢ ((𝐴 ∈ 𝐷 ∧ 𝐵 ∈ 𝑅) → (𝑧 ∈ 𝑆 → 𝜒)) |
10 | 9 | com12 32 | . . . 4 ⊢ (𝑧 ∈ 𝑆 → ((𝐴 ∈ 𝐷 ∧ 𝐵 ∈ 𝑅) → 𝜒)) |
11 | 2, 10 | vtoclga 3589 | . . 3 ⊢ (𝐶 ∈ 𝑆 → ((𝐴 ∈ 𝐷 ∧ 𝐵 ∈ 𝑅) → 𝜃)) |
12 | 11 | impcom 407 | . 2 ⊢ (((𝐴 ∈ 𝐷 ∧ 𝐵 ∈ 𝑅) ∧ 𝐶 ∈ 𝑆) → 𝜃) |
13 | 12 | 3impa 1110 | 1 ⊢ ((𝐴 ∈ 𝐷 ∧ 𝐵 ∈ 𝑅 ∧ 𝐶 ∈ 𝑆) → 𝜃) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∧ w3a 1087 = wceq 1537 ∈ wcel 2108 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2711 |
This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1089 df-tru 1540 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 |
This theorem is referenced by: preq12bg 4878 poclOLD 5616 xpord3pred 8193 jensenlem2 27049 wrdt2ind 32920 |
Copyright terms: Public domain | W3C validator |