Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > vtocl3ga | Structured version Visualization version GIF version |
Description: Implicit substitution of 3 classes for 3 setvar variables. (Contributed by NM, 20-Aug-1995.) |
Ref | Expression |
---|---|
vtocl3ga.1 | ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) |
vtocl3ga.2 | ⊢ (𝑦 = 𝐵 → (𝜓 ↔ 𝜒)) |
vtocl3ga.3 | ⊢ (𝑧 = 𝐶 → (𝜒 ↔ 𝜃)) |
vtocl3ga.4 | ⊢ ((𝑥 ∈ 𝐷 ∧ 𝑦 ∈ 𝑅 ∧ 𝑧 ∈ 𝑆) → 𝜑) |
Ref | Expression |
---|---|
vtocl3ga | ⊢ ((𝐴 ∈ 𝐷 ∧ 𝐵 ∈ 𝑅 ∧ 𝐶 ∈ 𝑆) → 𝜃) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfcv 2919 | . 2 ⊢ Ⅎ𝑥𝐴 | |
2 | nfcv 2919 | . 2 ⊢ Ⅎ𝑦𝐴 | |
3 | nfcv 2919 | . 2 ⊢ Ⅎ𝑧𝐴 | |
4 | nfcv 2919 | . 2 ⊢ Ⅎ𝑦𝐵 | |
5 | nfcv 2919 | . 2 ⊢ Ⅎ𝑧𝐵 | |
6 | nfcv 2919 | . 2 ⊢ Ⅎ𝑧𝐶 | |
7 | nfv 1915 | . 2 ⊢ Ⅎ𝑥𝜓 | |
8 | nfv 1915 | . 2 ⊢ Ⅎ𝑦𝜒 | |
9 | nfv 1915 | . 2 ⊢ Ⅎ𝑧𝜃 | |
10 | vtocl3ga.1 | . 2 ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) | |
11 | vtocl3ga.2 | . 2 ⊢ (𝑦 = 𝐵 → (𝜓 ↔ 𝜒)) | |
12 | vtocl3ga.3 | . 2 ⊢ (𝑧 = 𝐶 → (𝜒 ↔ 𝜃)) | |
13 | vtocl3ga.4 | . 2 ⊢ ((𝑥 ∈ 𝐷 ∧ 𝑦 ∈ 𝑅 ∧ 𝑧 ∈ 𝑆) → 𝜑) | |
14 | 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13 | vtocl3gaf 3495 | 1 ⊢ ((𝐴 ∈ 𝐷 ∧ 𝐵 ∈ 𝑅 ∧ 𝐶 ∈ 𝑆) → 𝜃) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 209 ∧ w3a 1084 = wceq 1538 ∈ wcel 2111 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1911 ax-6 1970 ax-7 2015 ax-8 2113 ax-9 2121 ax-10 2142 ax-11 2158 ax-12 2175 ax-ext 2729 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 845 df-3an 1086 df-tru 1541 df-ex 1782 df-nf 1786 df-sb 2070 df-clab 2736 df-cleq 2750 df-clel 2830 df-nfc 2901 df-v 3411 |
This theorem is referenced by: preq12bg 4741 pocl 5450 jensenlem2 25672 wrdt2ind 30749 xpord3pred 33353 |
Copyright terms: Public domain | W3C validator |