MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  vtoclgaf Structured version   Visualization version   GIF version

Theorem vtoclgaf 3545
Description: Implicit substitution of a class for a setvar variable. (Contributed by NM, 17-Feb-2006.) (Revised by Mario Carneiro, 10-Oct-2016.)
Hypotheses
Ref Expression
vtoclgaf.1 𝑥𝐴
vtoclgaf.2 𝑥𝜓
vtoclgaf.3 (𝑥 = 𝐴 → (𝜑𝜓))
vtoclgaf.4 (𝑥𝐵𝜑)
Assertion
Ref Expression
vtoclgaf (𝐴𝐵𝜓)
Distinct variable group:   𝑥,𝐵
Allowed substitution hints:   𝜑(𝑥)   𝜓(𝑥)   𝐴(𝑥)

Proof of Theorem vtoclgaf
StepHypRef Expression
1 vtoclgaf.1 . . 3 𝑥𝐴
21nfel1 2909 . . . 4 𝑥 𝐴𝐵
3 vtoclgaf.2 . . . 4 𝑥𝜓
42, 3nfim 1896 . . 3 𝑥(𝐴𝐵𝜓)
5 eleq1 2817 . . . 4 (𝑥 = 𝐴 → (𝑥𝐵𝐴𝐵))
6 vtoclgaf.3 . . . 4 (𝑥 = 𝐴 → (𝜑𝜓))
75, 6imbi12d 344 . . 3 (𝑥 = 𝐴 → ((𝑥𝐵𝜑) ↔ (𝐴𝐵𝜓)))
8 vtoclgaf.4 . . 3 (𝑥𝐵𝜑)
91, 4, 7, 8vtoclgf 3538 . 2 (𝐴𝐵 → (𝐴𝐵𝜓))
109pm2.43i 52 1 (𝐴𝐵𝜓)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206   = wceq 1540  wnf 1783  wcel 2109  wnfc 2877
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-tru 1543  df-ex 1780  df-nf 1784  df-sb 2066  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-v 3452
This theorem is referenced by:  vtocl2gaf  3548  vtocl3gaf  3550  ssiun2s  5015  iunopeqop  5484  fvmptss  6983  fvmptf  6992  fmptco  7104  tfis  7834  inar1  10735  sumss  15697  fprodn0  15952  prmind2  16662  lss1d  20876  itg2splitlem  25656  dgrle  26155  cnlnadjlem5  32007  poimirlem25  37646  stoweidlem26  46031
  Copyright terms: Public domain W3C validator