![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > vtoclgaf | Structured version Visualization version GIF version |
Description: Implicit substitution of a class for a setvar variable. (Contributed by NM, 17-Feb-2006.) (Revised by Mario Carneiro, 10-Oct-2016.) |
Ref | Expression |
---|---|
vtoclgaf.1 | ⊢ Ⅎ𝑥𝐴 |
vtoclgaf.2 | ⊢ Ⅎ𝑥𝜓 |
vtoclgaf.3 | ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) |
vtoclgaf.4 | ⊢ (𝑥 ∈ 𝐵 → 𝜑) |
Ref | Expression |
---|---|
vtoclgaf | ⊢ (𝐴 ∈ 𝐵 → 𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | vtoclgaf.1 | . . 3 ⊢ Ⅎ𝑥𝐴 | |
2 | 1 | nfel1 2919 | . . . 4 ⊢ Ⅎ𝑥 𝐴 ∈ 𝐵 |
3 | vtoclgaf.2 | . . . 4 ⊢ Ⅎ𝑥𝜓 | |
4 | 2, 3 | nfim 1899 | . . 3 ⊢ Ⅎ𝑥(𝐴 ∈ 𝐵 → 𝜓) |
5 | eleq1 2821 | . . . 4 ⊢ (𝑥 = 𝐴 → (𝑥 ∈ 𝐵 ↔ 𝐴 ∈ 𝐵)) | |
6 | vtoclgaf.3 | . . . 4 ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) | |
7 | 5, 6 | imbi12d 344 | . . 3 ⊢ (𝑥 = 𝐴 → ((𝑥 ∈ 𝐵 → 𝜑) ↔ (𝐴 ∈ 𝐵 → 𝜓))) |
8 | vtoclgaf.4 | . . 3 ⊢ (𝑥 ∈ 𝐵 → 𝜑) | |
9 | 1, 4, 7, 8 | vtoclgf 3554 | . 2 ⊢ (𝐴 ∈ 𝐵 → (𝐴 ∈ 𝐵 → 𝜓)) |
10 | 9 | pm2.43i 52 | 1 ⊢ (𝐴 ∈ 𝐵 → 𝜓) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 = wceq 1541 Ⅎwnf 1785 ∈ wcel 2106 Ⅎwnfc 2883 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-tru 1544 df-ex 1782 df-nf 1786 df-sb 2068 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-v 3476 |
This theorem is referenced by: ssiun2s 5051 iunopeqop 5521 fvmptss 7010 fvmptf 7019 fmptco 7126 tfis 7843 inar1 10769 sumss 15669 fprodn0 15922 prmind2 16621 lss1d 20573 itg2splitlem 25265 dgrle 25756 cnlnadjlem5 31319 poimirlem25 36508 stoweidlem26 44732 |
Copyright terms: Public domain | W3C validator |