Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  vtoclgaf Structured version   Visualization version   GIF version

Theorem vtoclgaf 3548
 Description: Implicit substitution of a class for a setvar variable. (Contributed by NM, 17-Feb-2006.) (Revised by Mario Carneiro, 10-Oct-2016.)
Hypotheses
Ref Expression
vtoclgaf.1 𝑥𝐴
vtoclgaf.2 𝑥𝜓
vtoclgaf.3 (𝑥 = 𝐴 → (𝜑𝜓))
vtoclgaf.4 (𝑥𝐵𝜑)
Assertion
Ref Expression
vtoclgaf (𝐴𝐵𝜓)
Distinct variable group:   𝑥,𝐵
Allowed substitution hints:   𝜑(𝑥)   𝜓(𝑥)   𝐴(𝑥)

Proof of Theorem vtoclgaf
StepHypRef Expression
1 vtoclgaf.1 . . 3 𝑥𝐴
21nfel1 2995 . . . 4 𝑥 𝐴𝐵
3 vtoclgaf.2 . . . 4 𝑥𝜓
42, 3nfim 1897 . . 3 𝑥(𝐴𝐵𝜓)
5 eleq1 2901 . . . 4 (𝑥 = 𝐴 → (𝑥𝐵𝐴𝐵))
6 vtoclgaf.3 . . . 4 (𝑥 = 𝐴 → (𝜑𝜓))
75, 6imbi12d 348 . . 3 (𝑥 = 𝐴 → ((𝑥𝐵𝜑) ↔ (𝐴𝐵𝜓)))
8 vtoclgaf.4 . . 3 (𝑥𝐵𝜑)
91, 4, 7, 8vtoclgf 3540 . 2 (𝐴𝐵 → (𝐴𝐵𝜓))
109pm2.43i 52 1 (𝐴𝐵𝜓)
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ↔ wb 209   = wceq 1538  Ⅎwnf 1785   ∈ wcel 2114  Ⅎwnfc 2960 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2178  ax-ext 2794 This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-clab 2801  df-cleq 2815  df-clel 2894  df-nfc 2962  df-v 3471 This theorem is referenced by:  ssiun2s  4947  iunopeqop  5388  fvmptss  6762  fvmptf  6771  fmptco  6873  tfis  7554  inar1  10186  sumss  15072  fprodn0  15324  prmind2  16018  lss1d  19726  itg2splitlem  24350  dgrle  24838  cnlnadjlem5  29852  poimirlem25  35041  stoweidlem26  42608
 Copyright terms: Public domain W3C validator