MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  vtoclgaf Structured version   Visualization version   GIF version

Theorem vtoclgaf 3565
Description: Implicit substitution of a class for a setvar variable. (Contributed by NM, 17-Feb-2006.) (Revised by Mario Carneiro, 10-Oct-2016.)
Hypotheses
Ref Expression
vtoclgaf.1 𝑥𝐴
vtoclgaf.2 𝑥𝜓
vtoclgaf.3 (𝑥 = 𝐴 → (𝜑𝜓))
vtoclgaf.4 (𝑥𝐵𝜑)
Assertion
Ref Expression
vtoclgaf (𝐴𝐵𝜓)
Distinct variable group:   𝑥,𝐵
Allowed substitution hints:   𝜑(𝑥)   𝜓(𝑥)   𝐴(𝑥)

Proof of Theorem vtoclgaf
StepHypRef Expression
1 vtoclgaf.1 . . 3 𝑥𝐴
21nfel1 2918 . . . 4 𝑥 𝐴𝐵
3 vtoclgaf.2 . . . 4 𝑥𝜓
42, 3nfim 1898 . . 3 𝑥(𝐴𝐵𝜓)
5 eleq1 2820 . . . 4 (𝑥 = 𝐴 → (𝑥𝐵𝐴𝐵))
6 vtoclgaf.3 . . . 4 (𝑥 = 𝐴 → (𝜑𝜓))
75, 6imbi12d 343 . . 3 (𝑥 = 𝐴 → ((𝑥𝐵𝜑) ↔ (𝐴𝐵𝜓)))
8 vtoclgaf.4 . . 3 (𝑥𝐵𝜑)
91, 4, 7, 8vtoclgf 3555 . 2 (𝐴𝐵 → (𝐴𝐵𝜓))
109pm2.43i 52 1 (𝐴𝐵𝜓)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205   = wceq 1540  wnf 1784  wcel 2105  wnfc 2882
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2153  ax-12 2170  ax-ext 2702
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-tru 1543  df-ex 1781  df-nf 1785  df-sb 2067  df-clab 2709  df-cleq 2723  df-clel 2809  df-nfc 2884  df-v 3475
This theorem is referenced by:  ssiun2s  5052  iunopeqop  5522  fvmptss  7011  fvmptf  7020  fmptco  7130  tfis  7847  inar1  10773  sumss  15675  fprodn0  15928  prmind2  16627  lss1d  20719  itg2splitlem  25499  dgrle  25990  cnlnadjlem5  31588  poimirlem25  36817  stoweidlem26  45042
  Copyright terms: Public domain W3C validator