| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > vtoclgaf | Structured version Visualization version GIF version | ||
| Description: Implicit substitution of a class for a setvar variable. (Contributed by NM, 17-Feb-2006.) (Revised by Mario Carneiro, 10-Oct-2016.) |
| Ref | Expression |
|---|---|
| vtoclgaf.1 | ⊢ Ⅎ𝑥𝐴 |
| vtoclgaf.2 | ⊢ Ⅎ𝑥𝜓 |
| vtoclgaf.3 | ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) |
| vtoclgaf.4 | ⊢ (𝑥 ∈ 𝐵 → 𝜑) |
| Ref | Expression |
|---|---|
| vtoclgaf | ⊢ (𝐴 ∈ 𝐵 → 𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | vtoclgaf.1 | . . 3 ⊢ Ⅎ𝑥𝐴 | |
| 2 | 1 | nfel1 2908 | . . . 4 ⊢ Ⅎ𝑥 𝐴 ∈ 𝐵 |
| 3 | vtoclgaf.2 | . . . 4 ⊢ Ⅎ𝑥𝜓 | |
| 4 | 2, 3 | nfim 1896 | . . 3 ⊢ Ⅎ𝑥(𝐴 ∈ 𝐵 → 𝜓) |
| 5 | eleq1 2816 | . . . 4 ⊢ (𝑥 = 𝐴 → (𝑥 ∈ 𝐵 ↔ 𝐴 ∈ 𝐵)) | |
| 6 | vtoclgaf.3 | . . . 4 ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) | |
| 7 | 5, 6 | imbi12d 344 | . . 3 ⊢ (𝑥 = 𝐴 → ((𝑥 ∈ 𝐵 → 𝜑) ↔ (𝐴 ∈ 𝐵 → 𝜓))) |
| 8 | vtoclgaf.4 | . . 3 ⊢ (𝑥 ∈ 𝐵 → 𝜑) | |
| 9 | 1, 4, 7, 8 | vtoclgf 3524 | . 2 ⊢ (𝐴 ∈ 𝐵 → (𝐴 ∈ 𝐵 → 𝜓)) |
| 10 | 9 | pm2.43i 52 | 1 ⊢ (𝐴 ∈ 𝐵 → 𝜓) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 = wceq 1540 Ⅎwnf 1783 ∈ wcel 2109 Ⅎwnfc 2876 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1543 df-ex 1780 df-nf 1784 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-v 3438 |
| This theorem is referenced by: vtocl2gaf 3534 vtocl3gaf 3536 ssiun2s 4997 iunopeqop 5464 fvmptss 6942 fvmptf 6951 fmptco 7063 tfis 7788 inar1 10669 sumss 15631 fprodn0 15886 prmind2 16596 lss1d 20866 itg2splitlem 25647 dgrle 26146 cnlnadjlem5 32015 poimirlem25 37635 stoweidlem26 46017 |
| Copyright terms: Public domain | W3C validator |