| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > vtoclgaf | Structured version Visualization version GIF version | ||
| Description: Implicit substitution of a class for a setvar variable. (Contributed by NM, 17-Feb-2006.) (Revised by Mario Carneiro, 10-Oct-2016.) |
| Ref | Expression |
|---|---|
| vtoclgaf.1 | ⊢ Ⅎ𝑥𝐴 |
| vtoclgaf.2 | ⊢ Ⅎ𝑥𝜓 |
| vtoclgaf.3 | ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) |
| vtoclgaf.4 | ⊢ (𝑥 ∈ 𝐵 → 𝜑) |
| Ref | Expression |
|---|---|
| vtoclgaf | ⊢ (𝐴 ∈ 𝐵 → 𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | vtoclgaf.1 | . . 3 ⊢ Ⅎ𝑥𝐴 | |
| 2 | 1 | nfel1 2909 | . . . 4 ⊢ Ⅎ𝑥 𝐴 ∈ 𝐵 |
| 3 | vtoclgaf.2 | . . . 4 ⊢ Ⅎ𝑥𝜓 | |
| 4 | 2, 3 | nfim 1896 | . . 3 ⊢ Ⅎ𝑥(𝐴 ∈ 𝐵 → 𝜓) |
| 5 | eleq1 2817 | . . . 4 ⊢ (𝑥 = 𝐴 → (𝑥 ∈ 𝐵 ↔ 𝐴 ∈ 𝐵)) | |
| 6 | vtoclgaf.3 | . . . 4 ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) | |
| 7 | 5, 6 | imbi12d 344 | . . 3 ⊢ (𝑥 = 𝐴 → ((𝑥 ∈ 𝐵 → 𝜑) ↔ (𝐴 ∈ 𝐵 → 𝜓))) |
| 8 | vtoclgaf.4 | . . 3 ⊢ (𝑥 ∈ 𝐵 → 𝜑) | |
| 9 | 1, 4, 7, 8 | vtoclgf 3538 | . 2 ⊢ (𝐴 ∈ 𝐵 → (𝐴 ∈ 𝐵 → 𝜓)) |
| 10 | 9 | pm2.43i 52 | 1 ⊢ (𝐴 ∈ 𝐵 → 𝜓) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 = wceq 1540 Ⅎwnf 1783 ∈ wcel 2109 Ⅎwnfc 2877 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1543 df-ex 1780 df-nf 1784 df-sb 2066 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-v 3452 |
| This theorem is referenced by: vtocl2gaf 3548 vtocl3gaf 3550 ssiun2s 5015 iunopeqop 5484 fvmptss 6983 fvmptf 6992 fmptco 7104 tfis 7834 inar1 10735 sumss 15697 fprodn0 15952 prmind2 16662 lss1d 20876 itg2splitlem 25656 dgrle 26155 cnlnadjlem5 32007 poimirlem25 37646 stoweidlem26 46031 |
| Copyright terms: Public domain | W3C validator |