| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > vtoclgaf | Structured version Visualization version GIF version | ||
| Description: Implicit substitution of a class for a setvar variable. (Contributed by NM, 17-Feb-2006.) (Revised by Mario Carneiro, 10-Oct-2016.) |
| Ref | Expression |
|---|---|
| vtoclgaf.1 | ⊢ Ⅎ𝑥𝐴 |
| vtoclgaf.2 | ⊢ Ⅎ𝑥𝜓 |
| vtoclgaf.3 | ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) |
| vtoclgaf.4 | ⊢ (𝑥 ∈ 𝐵 → 𝜑) |
| Ref | Expression |
|---|---|
| vtoclgaf | ⊢ (𝐴 ∈ 𝐵 → 𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | vtoclgaf.1 | . . 3 ⊢ Ⅎ𝑥𝐴 | |
| 2 | 1 | nfel1 2915 | . . . 4 ⊢ Ⅎ𝑥 𝐴 ∈ 𝐵 |
| 3 | vtoclgaf.2 | . . . 4 ⊢ Ⅎ𝑥𝜓 | |
| 4 | 2, 3 | nfim 1896 | . . 3 ⊢ Ⅎ𝑥(𝐴 ∈ 𝐵 → 𝜓) |
| 5 | eleq1 2822 | . . . 4 ⊢ (𝑥 = 𝐴 → (𝑥 ∈ 𝐵 ↔ 𝐴 ∈ 𝐵)) | |
| 6 | vtoclgaf.3 | . . . 4 ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) | |
| 7 | 5, 6 | imbi12d 344 | . . 3 ⊢ (𝑥 = 𝐴 → ((𝑥 ∈ 𝐵 → 𝜑) ↔ (𝐴 ∈ 𝐵 → 𝜓))) |
| 8 | vtoclgaf.4 | . . 3 ⊢ (𝑥 ∈ 𝐵 → 𝜑) | |
| 9 | 1, 4, 7, 8 | vtoclgf 3548 | . 2 ⊢ (𝐴 ∈ 𝐵 → (𝐴 ∈ 𝐵 → 𝜓)) |
| 10 | 9 | pm2.43i 52 | 1 ⊢ (𝐴 ∈ 𝐵 → 𝜓) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 = wceq 1540 Ⅎwnf 1783 ∈ wcel 2108 Ⅎwnfc 2883 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1543 df-ex 1780 df-nf 1784 df-sb 2065 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-v 3461 |
| This theorem is referenced by: vtocl2gaf 3558 vtocl3gaf 3560 ssiun2s 5024 iunopeqop 5496 fvmptss 6998 fvmptf 7007 fmptco 7119 tfis 7850 inar1 10789 sumss 15740 fprodn0 15995 prmind2 16704 lss1d 20920 itg2splitlem 25701 dgrle 26200 cnlnadjlem5 32052 poimirlem25 37669 stoweidlem26 46055 |
| Copyright terms: Public domain | W3C validator |