MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  vtoclgaf Structured version   Visualization version   GIF version

Theorem vtoclgaf 3575
Description: Implicit substitution of a class for a setvar variable. (Contributed by NM, 17-Feb-2006.) (Revised by Mario Carneiro, 10-Oct-2016.)
Hypotheses
Ref Expression
vtoclgaf.1 𝑥𝐴
vtoclgaf.2 𝑥𝜓
vtoclgaf.3 (𝑥 = 𝐴 → (𝜑𝜓))
vtoclgaf.4 (𝑥𝐵𝜑)
Assertion
Ref Expression
vtoclgaf (𝐴𝐵𝜓)
Distinct variable group:   𝑥,𝐵
Allowed substitution hints:   𝜑(𝑥)   𝜓(𝑥)   𝐴(𝑥)

Proof of Theorem vtoclgaf
StepHypRef Expression
1 vtoclgaf.1 . . 3 𝑥𝐴
21nfel1 2919 . . . 4 𝑥 𝐴𝐵
3 vtoclgaf.2 . . . 4 𝑥𝜓
42, 3nfim 1893 . . 3 𝑥(𝐴𝐵𝜓)
5 eleq1 2826 . . . 4 (𝑥 = 𝐴 → (𝑥𝐵𝐴𝐵))
6 vtoclgaf.3 . . . 4 (𝑥 = 𝐴 → (𝜑𝜓))
75, 6imbi12d 344 . . 3 (𝑥 = 𝐴 → ((𝑥𝐵𝜑) ↔ (𝐴𝐵𝜓)))
8 vtoclgaf.4 . . 3 (𝑥𝐵𝜑)
91, 4, 7, 8vtoclgf 3568 . 2 (𝐴𝐵 → (𝐴𝐵𝜓))
109pm2.43i 52 1 (𝐴𝐵𝜓)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206   = wceq 1536  wnf 1779  wcel 2105  wnfc 2887
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1791  ax-4 1805  ax-5 1907  ax-6 1964  ax-7 2004  ax-8 2107  ax-9 2115  ax-10 2138  ax-11 2154  ax-12 2174  ax-ext 2705
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-tru 1539  df-ex 1776  df-nf 1780  df-sb 2062  df-clab 2712  df-cleq 2726  df-clel 2813  df-nfc 2889  df-v 3479
This theorem is referenced by:  vtocl2gaf  3578  vtocl3gaf  3580  ssiun2s  5052  iunopeqop  5530  fvmptss  7027  fvmptf  7036  fmptco  7148  tfis  7875  inar1  10812  sumss  15756  fprodn0  16011  prmind2  16718  lss1d  20978  itg2splitlem  25797  dgrle  26296  cnlnadjlem5  32099  poimirlem25  37631  stoweidlem26  45981
  Copyright terms: Public domain W3C validator