Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > vtoclgaf | Structured version Visualization version GIF version |
Description: Implicit substitution of a class for a setvar variable. (Contributed by NM, 17-Feb-2006.) (Revised by Mario Carneiro, 10-Oct-2016.) |
Ref | Expression |
---|---|
vtoclgaf.1 | ⊢ Ⅎ𝑥𝐴 |
vtoclgaf.2 | ⊢ Ⅎ𝑥𝜓 |
vtoclgaf.3 | ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) |
vtoclgaf.4 | ⊢ (𝑥 ∈ 𝐵 → 𝜑) |
Ref | Expression |
---|---|
vtoclgaf | ⊢ (𝐴 ∈ 𝐵 → 𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | vtoclgaf.1 | . . 3 ⊢ Ⅎ𝑥𝐴 | |
2 | 1 | nfel1 2923 | . . . 4 ⊢ Ⅎ𝑥 𝐴 ∈ 𝐵 |
3 | vtoclgaf.2 | . . . 4 ⊢ Ⅎ𝑥𝜓 | |
4 | 2, 3 | nfim 1899 | . . 3 ⊢ Ⅎ𝑥(𝐴 ∈ 𝐵 → 𝜓) |
5 | eleq1 2826 | . . . 4 ⊢ (𝑥 = 𝐴 → (𝑥 ∈ 𝐵 ↔ 𝐴 ∈ 𝐵)) | |
6 | vtoclgaf.3 | . . . 4 ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) | |
7 | 5, 6 | imbi12d 345 | . . 3 ⊢ (𝑥 = 𝐴 → ((𝑥 ∈ 𝐵 → 𝜑) ↔ (𝐴 ∈ 𝐵 → 𝜓))) |
8 | vtoclgaf.4 | . . 3 ⊢ (𝑥 ∈ 𝐵 → 𝜑) | |
9 | 1, 4, 7, 8 | vtoclgf 3503 | . 2 ⊢ (𝐴 ∈ 𝐵 → (𝐴 ∈ 𝐵 → 𝜓)) |
10 | 9 | pm2.43i 52 | 1 ⊢ (𝐴 ∈ 𝐵 → 𝜓) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 = wceq 1539 Ⅎwnf 1786 ∈ wcel 2106 Ⅎwnfc 2887 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-tru 1542 df-ex 1783 df-nf 1787 df-sb 2068 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-v 3434 |
This theorem is referenced by: ssiun2s 4978 iunopeqop 5435 fvmptss 6887 fvmptf 6896 fmptco 7001 tfis 7701 inar1 10531 sumss 15436 fprodn0 15689 prmind2 16390 lss1d 20225 itg2splitlem 24913 dgrle 25404 cnlnadjlem5 30433 poimirlem25 35802 stoweidlem26 43567 |
Copyright terms: Public domain | W3C validator |