Proof of Theorem vtocl3gaf
Step | Hyp | Ref
| Expression |
1 | | vtocl3gaf.f |
. . . 4
⊢
Ⅎ𝑧𝐶 |
2 | | vtocl3gaf.c |
. . . . . . 7
⊢
Ⅎ𝑧𝐴 |
3 | 2 | nfel1 2925 |
. . . . . 6
⊢
Ⅎ𝑧 𝐴 ∈ 𝑅 |
4 | | vtocl3gaf.e |
. . . . . . 7
⊢
Ⅎ𝑧𝐵 |
5 | 4 | nfel1 2925 |
. . . . . 6
⊢
Ⅎ𝑧 𝐵 ∈ 𝑆 |
6 | 3, 5 | nfan 1898 |
. . . . 5
⊢
Ⅎ𝑧(𝐴 ∈ 𝑅 ∧ 𝐵 ∈ 𝑆) |
7 | | vtocl3gaf.3 |
. . . . 5
⊢
Ⅎ𝑧𝜃 |
8 | 6, 7 | nfim 1895 |
. . . 4
⊢
Ⅎ𝑧((𝐴 ∈ 𝑅 ∧ 𝐵 ∈ 𝑆) → 𝜃) |
9 | | vtocl3gaf.6 |
. . . . 5
⊢ (𝑧 = 𝐶 → (𝜒 ↔ 𝜃)) |
10 | 9 | imbi2d 340 |
. . . 4
⊢ (𝑧 = 𝐶 → (((𝐴 ∈ 𝑅 ∧ 𝐵 ∈ 𝑆) → 𝜒) ↔ ((𝐴 ∈ 𝑅 ∧ 𝐵 ∈ 𝑆) → 𝜃))) |
11 | | vtocl3gaf.a |
. . . . . 6
⊢
Ⅎ𝑥𝐴 |
12 | | vtocl3gaf.b |
. . . . . 6
⊢
Ⅎ𝑦𝐴 |
13 | | vtocl3gaf.d |
. . . . . 6
⊢
Ⅎ𝑦𝐵 |
14 | | nfv 1913 |
. . . . . . 7
⊢
Ⅎ𝑥 𝑧 ∈ 𝑇 |
15 | | vtocl3gaf.1 |
. . . . . . 7
⊢
Ⅎ𝑥𝜓 |
16 | 14, 15 | nfim 1895 |
. . . . . 6
⊢
Ⅎ𝑥(𝑧 ∈ 𝑇 → 𝜓) |
17 | | nfv 1913 |
. . . . . . 7
⊢
Ⅎ𝑦 𝑧 ∈ 𝑇 |
18 | | vtocl3gaf.2 |
. . . . . . 7
⊢
Ⅎ𝑦𝜒 |
19 | 17, 18 | nfim 1895 |
. . . . . 6
⊢
Ⅎ𝑦(𝑧 ∈ 𝑇 → 𝜒) |
20 | | vtocl3gaf.4 |
. . . . . . 7
⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) |
21 | 20 | imbi2d 340 |
. . . . . 6
⊢ (𝑥 = 𝐴 → ((𝑧 ∈ 𝑇 → 𝜑) ↔ (𝑧 ∈ 𝑇 → 𝜓))) |
22 | | vtocl3gaf.5 |
. . . . . . 7
⊢ (𝑦 = 𝐵 → (𝜓 ↔ 𝜒)) |
23 | 22 | imbi2d 340 |
. . . . . 6
⊢ (𝑦 = 𝐵 → ((𝑧 ∈ 𝑇 → 𝜓) ↔ (𝑧 ∈ 𝑇 → 𝜒))) |
24 | | vtocl3gaf.7 |
. . . . . . 7
⊢ ((𝑥 ∈ 𝑅 ∧ 𝑦 ∈ 𝑆 ∧ 𝑧 ∈ 𝑇) → 𝜑) |
25 | 24 | 3expia 1121 |
. . . . . 6
⊢ ((𝑥 ∈ 𝑅 ∧ 𝑦 ∈ 𝑆) → (𝑧 ∈ 𝑇 → 𝜑)) |
26 | 11, 12, 13, 16, 19, 21, 23, 25 | vtocl2gaf 3591 |
. . . . 5
⊢ ((𝐴 ∈ 𝑅 ∧ 𝐵 ∈ 𝑆) → (𝑧 ∈ 𝑇 → 𝜒)) |
27 | 26 | com12 32 |
. . . 4
⊢ (𝑧 ∈ 𝑇 → ((𝐴 ∈ 𝑅 ∧ 𝐵 ∈ 𝑆) → 𝜒)) |
28 | 1, 8, 10, 27 | vtoclgaf 3588 |
. . 3
⊢ (𝐶 ∈ 𝑇 → ((𝐴 ∈ 𝑅 ∧ 𝐵 ∈ 𝑆) → 𝜃)) |
29 | 28 | impcom 407 |
. 2
⊢ (((𝐴 ∈ 𝑅 ∧ 𝐵 ∈ 𝑆) ∧ 𝐶 ∈ 𝑇) → 𝜃) |
30 | 29 | 3impa 1110 |
1
⊢ ((𝐴 ∈ 𝑅 ∧ 𝐵 ∈ 𝑆 ∧ 𝐶 ∈ 𝑇) → 𝜃) |