Proof of Theorem vtocl3gaf
Step | Hyp | Ref
| Expression |
1 | | vtocl3gaf.a |
. . 3
⊢
Ⅎ𝑥𝐴 |
2 | | vtocl3gaf.b |
. . 3
⊢
Ⅎ𝑦𝐴 |
3 | | vtocl3gaf.c |
. . 3
⊢
Ⅎ𝑧𝐴 |
4 | | vtocl3gaf.d |
. . 3
⊢
Ⅎ𝑦𝐵 |
5 | | vtocl3gaf.e |
. . 3
⊢
Ⅎ𝑧𝐵 |
6 | | vtocl3gaf.f |
. . 3
⊢
Ⅎ𝑧𝐶 |
7 | 1 | nfel1 2920 |
. . . . 5
⊢
Ⅎ𝑥 𝐴 ∈ 𝑅 |
8 | | nfv 1922 |
. . . . 5
⊢
Ⅎ𝑥 𝑦 ∈ 𝑆 |
9 | | nfv 1922 |
. . . . 5
⊢
Ⅎ𝑥 𝑧 ∈ 𝑇 |
10 | 7, 8, 9 | nf3an 1909 |
. . . 4
⊢
Ⅎ𝑥(𝐴 ∈ 𝑅 ∧ 𝑦 ∈ 𝑆 ∧ 𝑧 ∈ 𝑇) |
11 | | vtocl3gaf.1 |
. . . 4
⊢
Ⅎ𝑥𝜓 |
12 | 10, 11 | nfim 1904 |
. . 3
⊢
Ⅎ𝑥((𝐴 ∈ 𝑅 ∧ 𝑦 ∈ 𝑆 ∧ 𝑧 ∈ 𝑇) → 𝜓) |
13 | 2 | nfel1 2920 |
. . . . 5
⊢
Ⅎ𝑦 𝐴 ∈ 𝑅 |
14 | 4 | nfel1 2920 |
. . . . 5
⊢
Ⅎ𝑦 𝐵 ∈ 𝑆 |
15 | | nfv 1922 |
. . . . 5
⊢
Ⅎ𝑦 𝑧 ∈ 𝑇 |
16 | 13, 14, 15 | nf3an 1909 |
. . . 4
⊢
Ⅎ𝑦(𝐴 ∈ 𝑅 ∧ 𝐵 ∈ 𝑆 ∧ 𝑧 ∈ 𝑇) |
17 | | vtocl3gaf.2 |
. . . 4
⊢
Ⅎ𝑦𝜒 |
18 | 16, 17 | nfim 1904 |
. . 3
⊢
Ⅎ𝑦((𝐴 ∈ 𝑅 ∧ 𝐵 ∈ 𝑆 ∧ 𝑧 ∈ 𝑇) → 𝜒) |
19 | 3 | nfel1 2920 |
. . . . 5
⊢
Ⅎ𝑧 𝐴 ∈ 𝑅 |
20 | 5 | nfel1 2920 |
. . . . 5
⊢
Ⅎ𝑧 𝐵 ∈ 𝑆 |
21 | 6 | nfel1 2920 |
. . . . 5
⊢
Ⅎ𝑧 𝐶 ∈ 𝑇 |
22 | 19, 20, 21 | nf3an 1909 |
. . . 4
⊢
Ⅎ𝑧(𝐴 ∈ 𝑅 ∧ 𝐵 ∈ 𝑆 ∧ 𝐶 ∈ 𝑇) |
23 | | vtocl3gaf.3 |
. . . 4
⊢
Ⅎ𝑧𝜃 |
24 | 22, 23 | nfim 1904 |
. . 3
⊢
Ⅎ𝑧((𝐴 ∈ 𝑅 ∧ 𝐵 ∈ 𝑆 ∧ 𝐶 ∈ 𝑇) → 𝜃) |
25 | | eleq1 2825 |
. . . . 5
⊢ (𝑥 = 𝐴 → (𝑥 ∈ 𝑅 ↔ 𝐴 ∈ 𝑅)) |
26 | 25 | 3anbi1d 1442 |
. . . 4
⊢ (𝑥 = 𝐴 → ((𝑥 ∈ 𝑅 ∧ 𝑦 ∈ 𝑆 ∧ 𝑧 ∈ 𝑇) ↔ (𝐴 ∈ 𝑅 ∧ 𝑦 ∈ 𝑆 ∧ 𝑧 ∈ 𝑇))) |
27 | | vtocl3gaf.4 |
. . . 4
⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) |
28 | 26, 27 | imbi12d 348 |
. . 3
⊢ (𝑥 = 𝐴 → (((𝑥 ∈ 𝑅 ∧ 𝑦 ∈ 𝑆 ∧ 𝑧 ∈ 𝑇) → 𝜑) ↔ ((𝐴 ∈ 𝑅 ∧ 𝑦 ∈ 𝑆 ∧ 𝑧 ∈ 𝑇) → 𝜓))) |
29 | | eleq1 2825 |
. . . . 5
⊢ (𝑦 = 𝐵 → (𝑦 ∈ 𝑆 ↔ 𝐵 ∈ 𝑆)) |
30 | 29 | 3anbi2d 1443 |
. . . 4
⊢ (𝑦 = 𝐵 → ((𝐴 ∈ 𝑅 ∧ 𝑦 ∈ 𝑆 ∧ 𝑧 ∈ 𝑇) ↔ (𝐴 ∈ 𝑅 ∧ 𝐵 ∈ 𝑆 ∧ 𝑧 ∈ 𝑇))) |
31 | | vtocl3gaf.5 |
. . . 4
⊢ (𝑦 = 𝐵 → (𝜓 ↔ 𝜒)) |
32 | 30, 31 | imbi12d 348 |
. . 3
⊢ (𝑦 = 𝐵 → (((𝐴 ∈ 𝑅 ∧ 𝑦 ∈ 𝑆 ∧ 𝑧 ∈ 𝑇) → 𝜓) ↔ ((𝐴 ∈ 𝑅 ∧ 𝐵 ∈ 𝑆 ∧ 𝑧 ∈ 𝑇) → 𝜒))) |
33 | | eleq1 2825 |
. . . . 5
⊢ (𝑧 = 𝐶 → (𝑧 ∈ 𝑇 ↔ 𝐶 ∈ 𝑇)) |
34 | 33 | 3anbi3d 1444 |
. . . 4
⊢ (𝑧 = 𝐶 → ((𝐴 ∈ 𝑅 ∧ 𝐵 ∈ 𝑆 ∧ 𝑧 ∈ 𝑇) ↔ (𝐴 ∈ 𝑅 ∧ 𝐵 ∈ 𝑆 ∧ 𝐶 ∈ 𝑇))) |
35 | | vtocl3gaf.6 |
. . . 4
⊢ (𝑧 = 𝐶 → (𝜒 ↔ 𝜃)) |
36 | 34, 35 | imbi12d 348 |
. . 3
⊢ (𝑧 = 𝐶 → (((𝐴 ∈ 𝑅 ∧ 𝐵 ∈ 𝑆 ∧ 𝑧 ∈ 𝑇) → 𝜒) ↔ ((𝐴 ∈ 𝑅 ∧ 𝐵 ∈ 𝑆 ∧ 𝐶 ∈ 𝑇) → 𝜃))) |
37 | | vtocl3gaf.7 |
. . 3
⊢ ((𝑥 ∈ 𝑅 ∧ 𝑦 ∈ 𝑆 ∧ 𝑧 ∈ 𝑇) → 𝜑) |
38 | 1, 2, 3, 4, 5, 6, 12, 18, 24, 28, 32, 36, 37 | vtocl3gf 3485 |
. 2
⊢ ((𝐴 ∈ 𝑅 ∧ 𝐵 ∈ 𝑆 ∧ 𝐶 ∈ 𝑇) → ((𝐴 ∈ 𝑅 ∧ 𝐵 ∈ 𝑆 ∧ 𝐶 ∈ 𝑇) → 𝜃)) |
39 | 38 | pm2.43i 52 |
1
⊢ ((𝐴 ∈ 𝑅 ∧ 𝐵 ∈ 𝑆 ∧ 𝐶 ∈ 𝑇) → 𝜃) |