![]() |
Mathbox for Peter Mazsa |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > xrnres4 | Structured version Visualization version GIF version |
Description: Two ways to express restriction of range Cartesian product. (Contributed by Peter Mazsa, 29-Dec-2020.) |
Ref | Expression |
---|---|
xrnres4 | ⊢ ((𝑅 ⋉ 𝑆) ↾ 𝐴) = ((𝑅 ⋉ 𝑆) ∩ (𝐴 × (ran (𝑅 ↾ 𝐴) × ran (𝑆 ↾ 𝐴)))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | xrnres3 38385 | . 2 ⊢ ((𝑅 ⋉ 𝑆) ↾ 𝐴) = ((𝑅 ↾ 𝐴) ⋉ (𝑆 ↾ 𝐴)) | |
2 | dfres4 38274 | . . 3 ⊢ (𝑅 ↾ 𝐴) = (𝑅 ∩ (𝐴 × ran (𝑅 ↾ 𝐴))) | |
3 | dfres4 38274 | . . 3 ⊢ (𝑆 ↾ 𝐴) = (𝑆 ∩ (𝐴 × ran (𝑆 ↾ 𝐴))) | |
4 | 2, 3 | xrneq12i 38365 | . 2 ⊢ ((𝑅 ↾ 𝐴) ⋉ (𝑆 ↾ 𝐴)) = ((𝑅 ∩ (𝐴 × ran (𝑅 ↾ 𝐴))) ⋉ (𝑆 ∩ (𝐴 × ran (𝑆 ↾ 𝐴)))) |
5 | inxpxrn 38376 | . 2 ⊢ ((𝑅 ∩ (𝐴 × ran (𝑅 ↾ 𝐴))) ⋉ (𝑆 ∩ (𝐴 × ran (𝑆 ↾ 𝐴)))) = ((𝑅 ⋉ 𝑆) ∩ (𝐴 × (ran (𝑅 ↾ 𝐴) × ran (𝑆 ↾ 𝐴)))) | |
6 | 1, 4, 5 | 3eqtri 2766 | 1 ⊢ ((𝑅 ⋉ 𝑆) ↾ 𝐴) = ((𝑅 ⋉ 𝑆) ∩ (𝐴 × (ran (𝑅 ↾ 𝐴) × ran (𝑆 ↾ 𝐴)))) |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1536 ∩ cin 3961 × cxp 5686 ran crn 5689 ↾ cres 5690 ⋉ cxrn 38160 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1791 ax-4 1805 ax-5 1907 ax-6 1964 ax-7 2004 ax-8 2107 ax-9 2115 ax-10 2138 ax-11 2154 ax-12 2174 ax-ext 2705 ax-sep 5301 ax-nul 5311 ax-pr 5437 ax-un 7753 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1539 df-fal 1549 df-ex 1776 df-nf 1780 df-sb 2062 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2726 df-clel 2813 df-nfc 2889 df-ne 2938 df-ral 3059 df-rex 3068 df-rab 3433 df-v 3479 df-dif 3965 df-un 3967 df-in 3969 df-ss 3979 df-nul 4339 df-if 4531 df-sn 4631 df-pr 4633 df-op 4637 df-uni 4912 df-br 5148 df-opab 5210 df-mpt 5231 df-id 5582 df-xp 5694 df-rel 5695 df-cnv 5696 df-co 5697 df-dm 5698 df-rn 5699 df-res 5700 df-iota 6515 df-fun 6564 df-fn 6565 df-f 6566 df-fo 6568 df-fv 6570 df-1st 8012 df-2nd 8013 df-xrn 38352 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |