Users' Mathboxes Mathbox for Peter Mazsa < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  xrnres4 Structured version   Visualization version   GIF version

Theorem xrnres4 38364
Description: Two ways to express restriction of range Cartesian product. (Contributed by Peter Mazsa, 29-Dec-2020.)
Assertion
Ref Expression
xrnres4 ((𝑅𝑆) ↾ 𝐴) = ((𝑅𝑆) ∩ (𝐴 × (ran (𝑅𝐴) × ran (𝑆𝐴))))

Proof of Theorem xrnres4
StepHypRef Expression
1 xrnres3 38363 . 2 ((𝑅𝑆) ↾ 𝐴) = ((𝑅𝐴) ⋉ (𝑆𝐴))
2 dfres4 38254 . . 3 (𝑅𝐴) = (𝑅 ∩ (𝐴 × ran (𝑅𝐴)))
3 dfres4 38254 . . 3 (𝑆𝐴) = (𝑆 ∩ (𝐴 × ran (𝑆𝐴)))
42, 3xrneq12i 38343 . 2 ((𝑅𝐴) ⋉ (𝑆𝐴)) = ((𝑅 ∩ (𝐴 × ran (𝑅𝐴))) ⋉ (𝑆 ∩ (𝐴 × ran (𝑆𝐴))))
5 inxpxrn 38354 . 2 ((𝑅 ∩ (𝐴 × ran (𝑅𝐴))) ⋉ (𝑆 ∩ (𝐴 × ran (𝑆𝐴)))) = ((𝑅𝑆) ∩ (𝐴 × (ran (𝑅𝐴) × ran (𝑆𝐴))))
61, 4, 53eqtri 2756 1 ((𝑅𝑆) ↾ 𝐴) = ((𝑅𝑆) ∩ (𝐴 × (ran (𝑅𝐴) × ran (𝑆𝐴))))
Colors of variables: wff setvar class
Syntax hints:   = wceq 1540  cin 3910   × cxp 5629  ran crn 5632  cres 5633  cxrn 38141
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5246  ax-nul 5256  ax-pr 5382  ax-un 7691
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rab 3403  df-v 3446  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-nul 4293  df-if 4485  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-br 5103  df-opab 5165  df-mpt 5184  df-id 5526  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-fo 6505  df-fv 6507  df-1st 7947  df-2nd 7948  df-xrn 38326
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator