Users' Mathboxes Mathbox for Peter Mazsa < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  xrnres4 Structured version   Visualization version   GIF version

Theorem xrnres4 38386
Description: Two ways to express restriction of range Cartesian product. (Contributed by Peter Mazsa, 29-Dec-2020.)
Assertion
Ref Expression
xrnres4 ((𝑅𝑆) ↾ 𝐴) = ((𝑅𝑆) ∩ (𝐴 × (ran (𝑅𝐴) × ran (𝑆𝐴))))

Proof of Theorem xrnres4
StepHypRef Expression
1 xrnres3 38385 . 2 ((𝑅𝑆) ↾ 𝐴) = ((𝑅𝐴) ⋉ (𝑆𝐴))
2 dfres4 38274 . . 3 (𝑅𝐴) = (𝑅 ∩ (𝐴 × ran (𝑅𝐴)))
3 dfres4 38274 . . 3 (𝑆𝐴) = (𝑆 ∩ (𝐴 × ran (𝑆𝐴)))
42, 3xrneq12i 38365 . 2 ((𝑅𝐴) ⋉ (𝑆𝐴)) = ((𝑅 ∩ (𝐴 × ran (𝑅𝐴))) ⋉ (𝑆 ∩ (𝐴 × ran (𝑆𝐴))))
5 inxpxrn 38376 . 2 ((𝑅 ∩ (𝐴 × ran (𝑅𝐴))) ⋉ (𝑆 ∩ (𝐴 × ran (𝑆𝐴)))) = ((𝑅𝑆) ∩ (𝐴 × (ran (𝑅𝐴) × ran (𝑆𝐴))))
61, 4, 53eqtri 2766 1 ((𝑅𝑆) ↾ 𝐴) = ((𝑅𝑆) ∩ (𝐴 × (ran (𝑅𝐴) × ran (𝑆𝐴))))
Colors of variables: wff setvar class
Syntax hints:   = wceq 1536  cin 3961   × cxp 5686  ran crn 5689  cres 5690  cxrn 38160
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1791  ax-4 1805  ax-5 1907  ax-6 1964  ax-7 2004  ax-8 2107  ax-9 2115  ax-10 2138  ax-11 2154  ax-12 2174  ax-ext 2705  ax-sep 5301  ax-nul 5311  ax-pr 5437  ax-un 7753
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1539  df-fal 1549  df-ex 1776  df-nf 1780  df-sb 2062  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2726  df-clel 2813  df-nfc 2889  df-ne 2938  df-ral 3059  df-rex 3068  df-rab 3433  df-v 3479  df-dif 3965  df-un 3967  df-in 3969  df-ss 3979  df-nul 4339  df-if 4531  df-sn 4631  df-pr 4633  df-op 4637  df-uni 4912  df-br 5148  df-opab 5210  df-mpt 5231  df-id 5582  df-xp 5694  df-rel 5695  df-cnv 5696  df-co 5697  df-dm 5698  df-rn 5699  df-res 5700  df-iota 6515  df-fun 6564  df-fn 6565  df-f 6566  df-fo 6568  df-fv 6570  df-1st 8012  df-2nd 8013  df-xrn 38352
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator