Users' Mathboxes Mathbox for Peter Mazsa < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  xrnres4 Structured version   Visualization version   GIF version

Theorem xrnres4 34706
Description: Two ways to express restriction of range Cartesian product. (Contributed by Peter Mazsa, 29-Dec-2020.)
Assertion
Ref Expression
xrnres4 ((𝑅𝑆) ↾ 𝐴) = ((𝑅𝑆) ∩ (𝐴 × (ran (𝑅𝐴) × ran (𝑆𝐴))))

Proof of Theorem xrnres4
StepHypRef Expression
1 xrnres3 34705 . 2 ((𝑅𝑆) ↾ 𝐴) = ((𝑅𝐴) ⋉ (𝑆𝐴))
2 dfres4 34607 . . 3 (𝑅𝐴) = (𝑅 ∩ (𝐴 × ran (𝑅𝐴)))
3 dfres4 34607 . . 3 (𝑆𝐴) = (𝑆 ∩ (𝐴 × ran (𝑆𝐴)))
42, 3xrneq12i 34689 . 2 ((𝑅𝐴) ⋉ (𝑆𝐴)) = ((𝑅 ∩ (𝐴 × ran (𝑅𝐴))) ⋉ (𝑆 ∩ (𝐴 × ran (𝑆𝐴))))
5 inxpxrn 34696 . 2 ((𝑅 ∩ (𝐴 × ran (𝑅𝐴))) ⋉ (𝑆 ∩ (𝐴 × ran (𝑆𝐴)))) = ((𝑅𝑆) ∩ (𝐴 × (ran (𝑅𝐴) × ran (𝑆𝐴))))
61, 4, 53eqtri 2853 1 ((𝑅𝑆) ↾ 𝐴) = ((𝑅𝑆) ∩ (𝐴 × (ran (𝑅𝐴) × ran (𝑆𝐴))))
Colors of variables: wff setvar class
Syntax hints:   = wceq 1656  cin 3797   × cxp 5344  ran crn 5347  cres 5348  cxrn 34518
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1894  ax-4 1908  ax-5 2009  ax-6 2075  ax-7 2112  ax-8 2166  ax-9 2173  ax-10 2192  ax-11 2207  ax-12 2220  ax-13 2389  ax-ext 2803  ax-sep 5007  ax-nul 5015  ax-pow 5067  ax-pr 5129  ax-un 7214
This theorem depends on definitions:  df-bi 199  df-an 387  df-or 879  df-3an 1113  df-tru 1660  df-ex 1879  df-nf 1883  df-sb 2068  df-mo 2605  df-eu 2640  df-clab 2812  df-cleq 2818  df-clel 2821  df-nfc 2958  df-ral 3122  df-rex 3123  df-rab 3126  df-v 3416  df-sbc 3663  df-dif 3801  df-un 3803  df-in 3805  df-ss 3812  df-nul 4147  df-if 4309  df-sn 4400  df-pr 4402  df-op 4406  df-uni 4661  df-br 4876  df-opab 4938  df-mpt 4955  df-id 5252  df-xp 5352  df-rel 5353  df-cnv 5354  df-co 5355  df-dm 5356  df-rn 5357  df-res 5358  df-iota 6090  df-fun 6129  df-fn 6130  df-f 6131  df-fo 6133  df-fv 6135  df-1st 7433  df-2nd 7434  df-xrn 34676
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator