| Mathbox for Peter Mazsa |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > xrnresex | Structured version Visualization version GIF version | ||
| Description: Sufficient condition for a restricted range Cartesian product to be a set. (Contributed by Peter Mazsa, 16-Dec-2020.) (Revised by Peter Mazsa, 7-Sep-2021.) |
| Ref | Expression |
|---|---|
| xrnresex | ⊢ ((𝐴 ∈ 𝑉 ∧ 𝑅 ∈ 𝑊 ∧ (𝑆 ↾ 𝐴) ∈ 𝑋) → (𝑅 ⋉ (𝑆 ↾ 𝐴)) ∈ V) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | xrnres3 38396 | . . 3 ⊢ ((𝑅 ⋉ 𝑆) ↾ 𝐴) = ((𝑅 ↾ 𝐴) ⋉ (𝑆 ↾ 𝐴)) | |
| 2 | xrnres2 38395 | . . 3 ⊢ ((𝑅 ⋉ 𝑆) ↾ 𝐴) = (𝑅 ⋉ (𝑆 ↾ 𝐴)) | |
| 3 | 1, 2 | eqtr3i 2754 | . 2 ⊢ ((𝑅 ↾ 𝐴) ⋉ (𝑆 ↾ 𝐴)) = (𝑅 ⋉ (𝑆 ↾ 𝐴)) |
| 4 | dfres4 38287 | . . . 4 ⊢ (𝑅 ↾ 𝐴) = (𝑅 ∩ (𝐴 × ran (𝑅 ↾ 𝐴))) | |
| 5 | dfres4 38287 | . . . 4 ⊢ (𝑆 ↾ 𝐴) = (𝑆 ∩ (𝐴 × ran (𝑆 ↾ 𝐴))) | |
| 6 | 4, 5 | xrneq12i 38376 | . . 3 ⊢ ((𝑅 ↾ 𝐴) ⋉ (𝑆 ↾ 𝐴)) = ((𝑅 ∩ (𝐴 × ran (𝑅 ↾ 𝐴))) ⋉ (𝑆 ∩ (𝐴 × ran (𝑆 ↾ 𝐴)))) |
| 7 | simp1 1136 | . . . 4 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝑅 ∈ 𝑊 ∧ (𝑆 ↾ 𝐴) ∈ 𝑋) → 𝐴 ∈ 𝑉) | |
| 8 | resexg 5978 | . . . . . 6 ⊢ (𝑅 ∈ 𝑊 → (𝑅 ↾ 𝐴) ∈ V) | |
| 9 | rnexg 7835 | . . . . . 6 ⊢ ((𝑅 ↾ 𝐴) ∈ V → ran (𝑅 ↾ 𝐴) ∈ V) | |
| 10 | 8, 9 | syl 17 | . . . . 5 ⊢ (𝑅 ∈ 𝑊 → ran (𝑅 ↾ 𝐴) ∈ V) |
| 11 | 10 | 3ad2ant2 1134 | . . . 4 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝑅 ∈ 𝑊 ∧ (𝑆 ↾ 𝐴) ∈ 𝑋) → ran (𝑅 ↾ 𝐴) ∈ V) |
| 12 | rnexg 7835 | . . . . 5 ⊢ ((𝑆 ↾ 𝐴) ∈ 𝑋 → ran (𝑆 ↾ 𝐴) ∈ V) | |
| 13 | 12 | 3ad2ant3 1135 | . . . 4 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝑅 ∈ 𝑊 ∧ (𝑆 ↾ 𝐴) ∈ 𝑋) → ran (𝑆 ↾ 𝐴) ∈ V) |
| 14 | inxpxrn 38387 | . . . . 5 ⊢ ((𝑅 ∩ (𝐴 × ran (𝑅 ↾ 𝐴))) ⋉ (𝑆 ∩ (𝐴 × ran (𝑆 ↾ 𝐴)))) = ((𝑅 ⋉ 𝑆) ∩ (𝐴 × (ran (𝑅 ↾ 𝐴) × ran (𝑆 ↾ 𝐴)))) | |
| 15 | xrninxpex 38386 | . . . . 5 ⊢ ((𝐴 ∈ 𝑉 ∧ ran (𝑅 ↾ 𝐴) ∈ V ∧ ran (𝑆 ↾ 𝐴) ∈ V) → ((𝑅 ⋉ 𝑆) ∩ (𝐴 × (ran (𝑅 ↾ 𝐴) × ran (𝑆 ↾ 𝐴)))) ∈ V) | |
| 16 | 14, 15 | eqeltrid 2832 | . . . 4 ⊢ ((𝐴 ∈ 𝑉 ∧ ran (𝑅 ↾ 𝐴) ∈ V ∧ ran (𝑆 ↾ 𝐴) ∈ V) → ((𝑅 ∩ (𝐴 × ran (𝑅 ↾ 𝐴))) ⋉ (𝑆 ∩ (𝐴 × ran (𝑆 ↾ 𝐴)))) ∈ V) |
| 17 | 7, 11, 13, 16 | syl3anc 1373 | . . 3 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝑅 ∈ 𝑊 ∧ (𝑆 ↾ 𝐴) ∈ 𝑋) → ((𝑅 ∩ (𝐴 × ran (𝑅 ↾ 𝐴))) ⋉ (𝑆 ∩ (𝐴 × ran (𝑆 ↾ 𝐴)))) ∈ V) |
| 18 | 6, 17 | eqeltrid 2832 | . 2 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝑅 ∈ 𝑊 ∧ (𝑆 ↾ 𝐴) ∈ 𝑋) → ((𝑅 ↾ 𝐴) ⋉ (𝑆 ↾ 𝐴)) ∈ V) |
| 19 | 3, 18 | eqeltrrid 2833 | 1 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝑅 ∈ 𝑊 ∧ (𝑆 ↾ 𝐴) ∈ 𝑋) → (𝑅 ⋉ (𝑆 ↾ 𝐴)) ∈ V) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ w3a 1086 ∈ wcel 2109 Vcvv 3436 ∩ cin 3902 × cxp 5617 ran crn 5620 ↾ cres 5621 ⋉ cxrn 38174 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5235 ax-nul 5245 ax-pow 5304 ax-pr 5371 ax-un 7671 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rab 3395 df-v 3438 df-dif 3906 df-un 3908 df-in 3910 df-ss 3920 df-nul 4285 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4859 df-br 5093 df-opab 5155 df-mpt 5174 df-id 5514 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-iota 6438 df-fun 6484 df-fn 6485 df-f 6486 df-fo 6488 df-fv 6490 df-1st 7924 df-2nd 7925 df-xrn 38359 |
| This theorem is referenced by: xrnidresex 38399 xrncnvepresex 38400 |
| Copyright terms: Public domain | W3C validator |