Users' Mathboxes Mathbox for Peter Mazsa < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  xrnresex Structured version   Visualization version   GIF version

Theorem xrnresex 35534
Description: Sufficient condition for a restricted range Cartesian product to be a set. (Contributed by Peter Mazsa, 16-Dec-2020.) (Revised by Peter Mazsa, 7-Sep-2021.)
Assertion
Ref Expression
xrnresex ((𝐴𝑉𝑅𝑊 ∧ (𝑆𝐴) ∈ 𝑋) → (𝑅 ⋉ (𝑆𝐴)) ∈ V)

Proof of Theorem xrnresex
StepHypRef Expression
1 xrnres3 35532 . . 3 ((𝑅𝑆) ↾ 𝐴) = ((𝑅𝐴) ⋉ (𝑆𝐴))
2 xrnres2 35531 . . 3 ((𝑅𝑆) ↾ 𝐴) = (𝑅 ⋉ (𝑆𝐴))
31, 2eqtr3i 2843 . 2 ((𝑅𝐴) ⋉ (𝑆𝐴)) = (𝑅 ⋉ (𝑆𝐴))
4 dfres4 35431 . . . 4 (𝑅𝐴) = (𝑅 ∩ (𝐴 × ran (𝑅𝐴)))
5 dfres4 35431 . . . 4 (𝑆𝐴) = (𝑆 ∩ (𝐴 × ran (𝑆𝐴)))
64, 5xrneq12i 35516 . . 3 ((𝑅𝐴) ⋉ (𝑆𝐴)) = ((𝑅 ∩ (𝐴 × ran (𝑅𝐴))) ⋉ (𝑆 ∩ (𝐴 × ran (𝑆𝐴))))
7 simp1 1128 . . . 4 ((𝐴𝑉𝑅𝑊 ∧ (𝑆𝐴) ∈ 𝑋) → 𝐴𝑉)
8 resexg 5891 . . . . . 6 (𝑅𝑊 → (𝑅𝐴) ∈ V)
9 rnexg 7603 . . . . . 6 ((𝑅𝐴) ∈ V → ran (𝑅𝐴) ∈ V)
108, 9syl 17 . . . . 5 (𝑅𝑊 → ran (𝑅𝐴) ∈ V)
11103ad2ant2 1126 . . . 4 ((𝐴𝑉𝑅𝑊 ∧ (𝑆𝐴) ∈ 𝑋) → ran (𝑅𝐴) ∈ V)
12 rnexg 7603 . . . . 5 ((𝑆𝐴) ∈ 𝑋 → ran (𝑆𝐴) ∈ V)
13123ad2ant3 1127 . . . 4 ((𝐴𝑉𝑅𝑊 ∧ (𝑆𝐴) ∈ 𝑋) → ran (𝑆𝐴) ∈ V)
14 inxpxrn 35523 . . . . 5 ((𝑅 ∩ (𝐴 × ran (𝑅𝐴))) ⋉ (𝑆 ∩ (𝐴 × ran (𝑆𝐴)))) = ((𝑅𝑆) ∩ (𝐴 × (ran (𝑅𝐴) × ran (𝑆𝐴))))
15 xrninxpex 35522 . . . . 5 ((𝐴𝑉 ∧ ran (𝑅𝐴) ∈ V ∧ ran (𝑆𝐴) ∈ V) → ((𝑅𝑆) ∩ (𝐴 × (ran (𝑅𝐴) × ran (𝑆𝐴)))) ∈ V)
1614, 15eqeltrid 2914 . . . 4 ((𝐴𝑉 ∧ ran (𝑅𝐴) ∈ V ∧ ran (𝑆𝐴) ∈ V) → ((𝑅 ∩ (𝐴 × ran (𝑅𝐴))) ⋉ (𝑆 ∩ (𝐴 × ran (𝑆𝐴)))) ∈ V)
177, 11, 13, 16syl3anc 1363 . . 3 ((𝐴𝑉𝑅𝑊 ∧ (𝑆𝐴) ∈ 𝑋) → ((𝑅 ∩ (𝐴 × ran (𝑅𝐴))) ⋉ (𝑆 ∩ (𝐴 × ran (𝑆𝐴)))) ∈ V)
186, 17eqeltrid 2914 . 2 ((𝐴𝑉𝑅𝑊 ∧ (𝑆𝐴) ∈ 𝑋) → ((𝑅𝐴) ⋉ (𝑆𝐴)) ∈ V)
193, 18eqeltrrid 2915 1 ((𝐴𝑉𝑅𝑊 ∧ (𝑆𝐴) ∈ 𝑋) → (𝑅 ⋉ (𝑆𝐴)) ∈ V)
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3a 1079  wcel 2105  Vcvv 3492  cin 3932   × cxp 5546  ran crn 5549  cres 5550  cxrn 35333
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1787  ax-4 1801  ax-5 1902  ax-6 1961  ax-7 2006  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2151  ax-12 2167  ax-13 2381  ax-ext 2790  ax-sep 5194  ax-nul 5201  ax-pow 5257  ax-pr 5320  ax-un 7450
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 842  df-3an 1081  df-tru 1531  df-ex 1772  df-nf 1776  df-sb 2061  df-mo 2615  df-eu 2647  df-clab 2797  df-cleq 2811  df-clel 2890  df-nfc 2960  df-ral 3140  df-rex 3141  df-rab 3144  df-v 3494  df-sbc 3770  df-dif 3936  df-un 3938  df-in 3940  df-ss 3949  df-nul 4289  df-if 4464  df-pw 4537  df-sn 4558  df-pr 4560  df-op 4564  df-uni 4831  df-br 5058  df-opab 5120  df-mpt 5138  df-id 5453  df-xp 5554  df-rel 5555  df-cnv 5556  df-co 5557  df-dm 5558  df-rn 5559  df-res 5560  df-iota 6307  df-fun 6350  df-fn 6351  df-f 6352  df-fo 6354  df-fv 6356  df-1st 7678  df-2nd 7679  df-xrn 35503
This theorem is referenced by:  xrnidresex  35535  xrncnvepresex  35536
  Copyright terms: Public domain W3C validator