| Mathbox for Peter Mazsa |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > xrnresex | Structured version Visualization version GIF version | ||
| Description: Sufficient condition for a restricted range Cartesian product to be a set. (Contributed by Peter Mazsa, 16-Dec-2020.) (Revised by Peter Mazsa, 7-Sep-2021.) |
| Ref | Expression |
|---|---|
| xrnresex | ⊢ ((𝐴 ∈ 𝑉 ∧ 𝑅 ∈ 𝑊 ∧ (𝑆 ↾ 𝐴) ∈ 𝑋) → (𝑅 ⋉ (𝑆 ↾ 𝐴)) ∈ V) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | xrnres3 38406 | . . 3 ⊢ ((𝑅 ⋉ 𝑆) ↾ 𝐴) = ((𝑅 ↾ 𝐴) ⋉ (𝑆 ↾ 𝐴)) | |
| 2 | xrnres2 38405 | . . 3 ⊢ ((𝑅 ⋉ 𝑆) ↾ 𝐴) = (𝑅 ⋉ (𝑆 ↾ 𝐴)) | |
| 3 | 1, 2 | eqtr3i 2766 | . 2 ⊢ ((𝑅 ↾ 𝐴) ⋉ (𝑆 ↾ 𝐴)) = (𝑅 ⋉ (𝑆 ↾ 𝐴)) |
| 4 | dfres4 38295 | . . . 4 ⊢ (𝑅 ↾ 𝐴) = (𝑅 ∩ (𝐴 × ran (𝑅 ↾ 𝐴))) | |
| 5 | dfres4 38295 | . . . 4 ⊢ (𝑆 ↾ 𝐴) = (𝑆 ∩ (𝐴 × ran (𝑆 ↾ 𝐴))) | |
| 6 | 4, 5 | xrneq12i 38386 | . . 3 ⊢ ((𝑅 ↾ 𝐴) ⋉ (𝑆 ↾ 𝐴)) = ((𝑅 ∩ (𝐴 × ran (𝑅 ↾ 𝐴))) ⋉ (𝑆 ∩ (𝐴 × ran (𝑆 ↾ 𝐴)))) |
| 7 | simp1 1136 | . . . 4 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝑅 ∈ 𝑊 ∧ (𝑆 ↾ 𝐴) ∈ 𝑋) → 𝐴 ∈ 𝑉) | |
| 8 | resexg 6044 | . . . . . 6 ⊢ (𝑅 ∈ 𝑊 → (𝑅 ↾ 𝐴) ∈ V) | |
| 9 | rnexg 7925 | . . . . . 6 ⊢ ((𝑅 ↾ 𝐴) ∈ V → ran (𝑅 ↾ 𝐴) ∈ V) | |
| 10 | 8, 9 | syl 17 | . . . . 5 ⊢ (𝑅 ∈ 𝑊 → ran (𝑅 ↾ 𝐴) ∈ V) |
| 11 | 10 | 3ad2ant2 1134 | . . . 4 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝑅 ∈ 𝑊 ∧ (𝑆 ↾ 𝐴) ∈ 𝑋) → ran (𝑅 ↾ 𝐴) ∈ V) |
| 12 | rnexg 7925 | . . . . 5 ⊢ ((𝑆 ↾ 𝐴) ∈ 𝑋 → ran (𝑆 ↾ 𝐴) ∈ V) | |
| 13 | 12 | 3ad2ant3 1135 | . . . 4 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝑅 ∈ 𝑊 ∧ (𝑆 ↾ 𝐴) ∈ 𝑋) → ran (𝑆 ↾ 𝐴) ∈ V) |
| 14 | inxpxrn 38397 | . . . . 5 ⊢ ((𝑅 ∩ (𝐴 × ran (𝑅 ↾ 𝐴))) ⋉ (𝑆 ∩ (𝐴 × ran (𝑆 ↾ 𝐴)))) = ((𝑅 ⋉ 𝑆) ∩ (𝐴 × (ran (𝑅 ↾ 𝐴) × ran (𝑆 ↾ 𝐴)))) | |
| 15 | xrninxpex 38396 | . . . . 5 ⊢ ((𝐴 ∈ 𝑉 ∧ ran (𝑅 ↾ 𝐴) ∈ V ∧ ran (𝑆 ↾ 𝐴) ∈ V) → ((𝑅 ⋉ 𝑆) ∩ (𝐴 × (ran (𝑅 ↾ 𝐴) × ran (𝑆 ↾ 𝐴)))) ∈ V) | |
| 16 | 14, 15 | eqeltrid 2844 | . . . 4 ⊢ ((𝐴 ∈ 𝑉 ∧ ran (𝑅 ↾ 𝐴) ∈ V ∧ ran (𝑆 ↾ 𝐴) ∈ V) → ((𝑅 ∩ (𝐴 × ran (𝑅 ↾ 𝐴))) ⋉ (𝑆 ∩ (𝐴 × ran (𝑆 ↾ 𝐴)))) ∈ V) |
| 17 | 7, 11, 13, 16 | syl3anc 1372 | . . 3 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝑅 ∈ 𝑊 ∧ (𝑆 ↾ 𝐴) ∈ 𝑋) → ((𝑅 ∩ (𝐴 × ran (𝑅 ↾ 𝐴))) ⋉ (𝑆 ∩ (𝐴 × ran (𝑆 ↾ 𝐴)))) ∈ V) |
| 18 | 6, 17 | eqeltrid 2844 | . 2 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝑅 ∈ 𝑊 ∧ (𝑆 ↾ 𝐴) ∈ 𝑋) → ((𝑅 ↾ 𝐴) ⋉ (𝑆 ↾ 𝐴)) ∈ V) |
| 19 | 3, 18 | eqeltrrid 2845 | 1 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝑅 ∈ 𝑊 ∧ (𝑆 ↾ 𝐴) ∈ 𝑋) → (𝑅 ⋉ (𝑆 ↾ 𝐴)) ∈ V) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ w3a 1086 ∈ wcel 2107 Vcvv 3479 ∩ cin 3949 × cxp 5682 ran crn 5685 ↾ cres 5686 ⋉ cxrn 38182 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2707 ax-sep 5295 ax-nul 5305 ax-pow 5364 ax-pr 5431 ax-un 7756 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2728 df-clel 2815 df-nfc 2891 df-ne 2940 df-ral 3061 df-rex 3070 df-rab 3436 df-v 3481 df-dif 3953 df-un 3955 df-in 3957 df-ss 3967 df-nul 4333 df-if 4525 df-pw 4601 df-sn 4626 df-pr 4628 df-op 4632 df-uni 4907 df-br 5143 df-opab 5205 df-mpt 5225 df-id 5577 df-xp 5690 df-rel 5691 df-cnv 5692 df-co 5693 df-dm 5694 df-rn 5695 df-res 5696 df-iota 6513 df-fun 6562 df-fn 6563 df-f 6564 df-fo 6566 df-fv 6568 df-1st 8015 df-2nd 8016 df-xrn 38373 |
| This theorem is referenced by: xrnidresex 38409 xrncnvepresex 38410 |
| Copyright terms: Public domain | W3C validator |