![]() |
Mathbox for Peter Mazsa |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > xrnresex | Structured version Visualization version GIF version |
Description: Sufficient condition for a restricted range Cartesian product to be a set. (Contributed by Peter Mazsa, 16-Dec-2020.) (Revised by Peter Mazsa, 7-Sep-2021.) |
Ref | Expression |
---|---|
xrnresex | ⊢ ((𝐴 ∈ 𝑉 ∧ 𝑅 ∈ 𝑊 ∧ (𝑆 ↾ 𝐴) ∈ 𝑋) → (𝑅 ⋉ (𝑆 ↾ 𝐴)) ∈ V) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | xrnres3 37079 | . . 3 ⊢ ((𝑅 ⋉ 𝑆) ↾ 𝐴) = ((𝑅 ↾ 𝐴) ⋉ (𝑆 ↾ 𝐴)) | |
2 | xrnres2 37078 | . . 3 ⊢ ((𝑅 ⋉ 𝑆) ↾ 𝐴) = (𝑅 ⋉ (𝑆 ↾ 𝐴)) | |
3 | 1, 2 | eqtr3i 2761 | . 2 ⊢ ((𝑅 ↾ 𝐴) ⋉ (𝑆 ↾ 𝐴)) = (𝑅 ⋉ (𝑆 ↾ 𝐴)) |
4 | dfres4 36967 | . . . 4 ⊢ (𝑅 ↾ 𝐴) = (𝑅 ∩ (𝐴 × ran (𝑅 ↾ 𝐴))) | |
5 | dfres4 36967 | . . . 4 ⊢ (𝑆 ↾ 𝐴) = (𝑆 ∩ (𝐴 × ran (𝑆 ↾ 𝐴))) | |
6 | 4, 5 | xrneq12i 37059 | . . 3 ⊢ ((𝑅 ↾ 𝐴) ⋉ (𝑆 ↾ 𝐴)) = ((𝑅 ∩ (𝐴 × ran (𝑅 ↾ 𝐴))) ⋉ (𝑆 ∩ (𝐴 × ran (𝑆 ↾ 𝐴)))) |
7 | simp1 1136 | . . . 4 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝑅 ∈ 𝑊 ∧ (𝑆 ↾ 𝐴) ∈ 𝑋) → 𝐴 ∈ 𝑉) | |
8 | resexg 6019 | . . . . . 6 ⊢ (𝑅 ∈ 𝑊 → (𝑅 ↾ 𝐴) ∈ V) | |
9 | rnexg 7877 | . . . . . 6 ⊢ ((𝑅 ↾ 𝐴) ∈ V → ran (𝑅 ↾ 𝐴) ∈ V) | |
10 | 8, 9 | syl 17 | . . . . 5 ⊢ (𝑅 ∈ 𝑊 → ran (𝑅 ↾ 𝐴) ∈ V) |
11 | 10 | 3ad2ant2 1134 | . . . 4 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝑅 ∈ 𝑊 ∧ (𝑆 ↾ 𝐴) ∈ 𝑋) → ran (𝑅 ↾ 𝐴) ∈ V) |
12 | rnexg 7877 | . . . . 5 ⊢ ((𝑆 ↾ 𝐴) ∈ 𝑋 → ran (𝑆 ↾ 𝐴) ∈ V) | |
13 | 12 | 3ad2ant3 1135 | . . . 4 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝑅 ∈ 𝑊 ∧ (𝑆 ↾ 𝐴) ∈ 𝑋) → ran (𝑆 ↾ 𝐴) ∈ V) |
14 | inxpxrn 37070 | . . . . 5 ⊢ ((𝑅 ∩ (𝐴 × ran (𝑅 ↾ 𝐴))) ⋉ (𝑆 ∩ (𝐴 × ran (𝑆 ↾ 𝐴)))) = ((𝑅 ⋉ 𝑆) ∩ (𝐴 × (ran (𝑅 ↾ 𝐴) × ran (𝑆 ↾ 𝐴)))) | |
15 | xrninxpex 37069 | . . . . 5 ⊢ ((𝐴 ∈ 𝑉 ∧ ran (𝑅 ↾ 𝐴) ∈ V ∧ ran (𝑆 ↾ 𝐴) ∈ V) → ((𝑅 ⋉ 𝑆) ∩ (𝐴 × (ran (𝑅 ↾ 𝐴) × ran (𝑆 ↾ 𝐴)))) ∈ V) | |
16 | 14, 15 | eqeltrid 2836 | . . . 4 ⊢ ((𝐴 ∈ 𝑉 ∧ ran (𝑅 ↾ 𝐴) ∈ V ∧ ran (𝑆 ↾ 𝐴) ∈ V) → ((𝑅 ∩ (𝐴 × ran (𝑅 ↾ 𝐴))) ⋉ (𝑆 ∩ (𝐴 × ran (𝑆 ↾ 𝐴)))) ∈ V) |
17 | 7, 11, 13, 16 | syl3anc 1371 | . . 3 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝑅 ∈ 𝑊 ∧ (𝑆 ↾ 𝐴) ∈ 𝑋) → ((𝑅 ∩ (𝐴 × ran (𝑅 ↾ 𝐴))) ⋉ (𝑆 ∩ (𝐴 × ran (𝑆 ↾ 𝐴)))) ∈ V) |
18 | 6, 17 | eqeltrid 2836 | . 2 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝑅 ∈ 𝑊 ∧ (𝑆 ↾ 𝐴) ∈ 𝑋) → ((𝑅 ↾ 𝐴) ⋉ (𝑆 ↾ 𝐴)) ∈ V) |
19 | 3, 18 | eqeltrrid 2837 | 1 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝑅 ∈ 𝑊 ∧ (𝑆 ↾ 𝐴) ∈ 𝑋) → (𝑅 ⋉ (𝑆 ↾ 𝐴)) ∈ V) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ w3a 1087 ∈ wcel 2106 Vcvv 3473 ∩ cin 3943 × cxp 5667 ran crn 5670 ↾ cres 5671 ⋉ cxrn 36847 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2702 ax-sep 5292 ax-nul 5299 ax-pow 5356 ax-pr 5420 ax-un 7708 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2533 df-eu 2562 df-clab 2709 df-cleq 2723 df-clel 2809 df-nfc 2884 df-ne 2940 df-ral 3061 df-rex 3070 df-rab 3432 df-v 3475 df-dif 3947 df-un 3949 df-in 3951 df-ss 3961 df-nul 4319 df-if 4523 df-pw 4598 df-sn 4623 df-pr 4625 df-op 4629 df-uni 4902 df-br 5142 df-opab 5204 df-mpt 5225 df-id 5567 df-xp 5675 df-rel 5676 df-cnv 5677 df-co 5678 df-dm 5679 df-rn 5680 df-res 5681 df-iota 6484 df-fun 6534 df-fn 6535 df-f 6536 df-fo 6538 df-fv 6540 df-1st 7957 df-2nd 7958 df-xrn 37046 |
This theorem is referenced by: xrnidresex 37082 xrncnvepresex 37083 |
Copyright terms: Public domain | W3C validator |