Users' Mathboxes Mathbox for Peter Mazsa < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  xrnresex Structured version   Visualization version   GIF version

Theorem xrnresex 37788
Description: Sufficient condition for a restricted range Cartesian product to be a set. (Contributed by Peter Mazsa, 16-Dec-2020.) (Revised by Peter Mazsa, 7-Sep-2021.)
Assertion
Ref Expression
xrnresex ((𝐴𝑉𝑅𝑊 ∧ (𝑆𝐴) ∈ 𝑋) → (𝑅 ⋉ (𝑆𝐴)) ∈ V)

Proof of Theorem xrnresex
StepHypRef Expression
1 xrnres3 37786 . . 3 ((𝑅𝑆) ↾ 𝐴) = ((𝑅𝐴) ⋉ (𝑆𝐴))
2 xrnres2 37785 . . 3 ((𝑅𝑆) ↾ 𝐴) = (𝑅 ⋉ (𝑆𝐴))
31, 2eqtr3i 2756 . 2 ((𝑅𝐴) ⋉ (𝑆𝐴)) = (𝑅 ⋉ (𝑆𝐴))
4 dfres4 37674 . . . 4 (𝑅𝐴) = (𝑅 ∩ (𝐴 × ran (𝑅𝐴)))
5 dfres4 37674 . . . 4 (𝑆𝐴) = (𝑆 ∩ (𝐴 × ran (𝑆𝐴)))
64, 5xrneq12i 37766 . . 3 ((𝑅𝐴) ⋉ (𝑆𝐴)) = ((𝑅 ∩ (𝐴 × ran (𝑅𝐴))) ⋉ (𝑆 ∩ (𝐴 × ran (𝑆𝐴))))
7 simp1 1133 . . . 4 ((𝐴𝑉𝑅𝑊 ∧ (𝑆𝐴) ∈ 𝑋) → 𝐴𝑉)
8 resexg 6020 . . . . . 6 (𝑅𝑊 → (𝑅𝐴) ∈ V)
9 rnexg 7891 . . . . . 6 ((𝑅𝐴) ∈ V → ran (𝑅𝐴) ∈ V)
108, 9syl 17 . . . . 5 (𝑅𝑊 → ran (𝑅𝐴) ∈ V)
11103ad2ant2 1131 . . . 4 ((𝐴𝑉𝑅𝑊 ∧ (𝑆𝐴) ∈ 𝑋) → ran (𝑅𝐴) ∈ V)
12 rnexg 7891 . . . . 5 ((𝑆𝐴) ∈ 𝑋 → ran (𝑆𝐴) ∈ V)
13123ad2ant3 1132 . . . 4 ((𝐴𝑉𝑅𝑊 ∧ (𝑆𝐴) ∈ 𝑋) → ran (𝑆𝐴) ∈ V)
14 inxpxrn 37777 . . . . 5 ((𝑅 ∩ (𝐴 × ran (𝑅𝐴))) ⋉ (𝑆 ∩ (𝐴 × ran (𝑆𝐴)))) = ((𝑅𝑆) ∩ (𝐴 × (ran (𝑅𝐴) × ran (𝑆𝐴))))
15 xrninxpex 37776 . . . . 5 ((𝐴𝑉 ∧ ran (𝑅𝐴) ∈ V ∧ ran (𝑆𝐴) ∈ V) → ((𝑅𝑆) ∩ (𝐴 × (ran (𝑅𝐴) × ran (𝑆𝐴)))) ∈ V)
1614, 15eqeltrid 2831 . . . 4 ((𝐴𝑉 ∧ ran (𝑅𝐴) ∈ V ∧ ran (𝑆𝐴) ∈ V) → ((𝑅 ∩ (𝐴 × ran (𝑅𝐴))) ⋉ (𝑆 ∩ (𝐴 × ran (𝑆𝐴)))) ∈ V)
177, 11, 13, 16syl3anc 1368 . . 3 ((𝐴𝑉𝑅𝑊 ∧ (𝑆𝐴) ∈ 𝑋) → ((𝑅 ∩ (𝐴 × ran (𝑅𝐴))) ⋉ (𝑆 ∩ (𝐴 × ran (𝑆𝐴)))) ∈ V)
186, 17eqeltrid 2831 . 2 ((𝐴𝑉𝑅𝑊 ∧ (𝑆𝐴) ∈ 𝑋) → ((𝑅𝐴) ⋉ (𝑆𝐴)) ∈ V)
193, 18eqeltrrid 2832 1 ((𝐴𝑉𝑅𝑊 ∧ (𝑆𝐴) ∈ 𝑋) → (𝑅 ⋉ (𝑆𝐴)) ∈ V)
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3a 1084  wcel 2098  Vcvv 3468  cin 3942   × cxp 5667  ran crn 5670  cres 5671  cxrn 37554
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2163  ax-ext 2697  ax-sep 5292  ax-nul 5299  ax-pow 5356  ax-pr 5420  ax-un 7721
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2704  df-cleq 2718  df-clel 2804  df-nfc 2879  df-ne 2935  df-ral 3056  df-rex 3065  df-rab 3427  df-v 3470  df-dif 3946  df-un 3948  df-in 3950  df-ss 3960  df-nul 4318  df-if 4524  df-pw 4599  df-sn 4624  df-pr 4626  df-op 4630  df-uni 4903  df-br 5142  df-opab 5204  df-mpt 5225  df-id 5567  df-xp 5675  df-rel 5676  df-cnv 5677  df-co 5678  df-dm 5679  df-rn 5680  df-res 5681  df-iota 6488  df-fun 6538  df-fn 6539  df-f 6540  df-fo 6542  df-fv 6544  df-1st 7971  df-2nd 7972  df-xrn 37753
This theorem is referenced by:  xrnidresex  37789  xrncnvepresex  37790
  Copyright terms: Public domain W3C validator