![]() |
Mathbox for Peter Mazsa |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > xrnresex | Structured version Visualization version GIF version |
Description: Sufficient condition for a restricted range Cartesian product to be a set. (Contributed by Peter Mazsa, 16-Dec-2020.) (Revised by Peter Mazsa, 7-Sep-2021.) |
Ref | Expression |
---|---|
xrnresex | ⊢ ((𝐴 ∈ 𝑉 ∧ 𝑅 ∈ 𝑊 ∧ (𝑆 ↾ 𝐴) ∈ 𝑋) → (𝑅 ⋉ (𝑆 ↾ 𝐴)) ∈ V) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | xrnres3 37908 | . . 3 ⊢ ((𝑅 ⋉ 𝑆) ↾ 𝐴) = ((𝑅 ↾ 𝐴) ⋉ (𝑆 ↾ 𝐴)) | |
2 | xrnres2 37907 | . . 3 ⊢ ((𝑅 ⋉ 𝑆) ↾ 𝐴) = (𝑅 ⋉ (𝑆 ↾ 𝐴)) | |
3 | 1, 2 | eqtr3i 2758 | . 2 ⊢ ((𝑅 ↾ 𝐴) ⋉ (𝑆 ↾ 𝐴)) = (𝑅 ⋉ (𝑆 ↾ 𝐴)) |
4 | dfres4 37797 | . . . 4 ⊢ (𝑅 ↾ 𝐴) = (𝑅 ∩ (𝐴 × ran (𝑅 ↾ 𝐴))) | |
5 | dfres4 37797 | . . . 4 ⊢ (𝑆 ↾ 𝐴) = (𝑆 ∩ (𝐴 × ran (𝑆 ↾ 𝐴))) | |
6 | 4, 5 | xrneq12i 37888 | . . 3 ⊢ ((𝑅 ↾ 𝐴) ⋉ (𝑆 ↾ 𝐴)) = ((𝑅 ∩ (𝐴 × ran (𝑅 ↾ 𝐴))) ⋉ (𝑆 ∩ (𝐴 × ran (𝑆 ↾ 𝐴)))) |
7 | simp1 1133 | . . . 4 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝑅 ∈ 𝑊 ∧ (𝑆 ↾ 𝐴) ∈ 𝑋) → 𝐴 ∈ 𝑉) | |
8 | resexg 6036 | . . . . . 6 ⊢ (𝑅 ∈ 𝑊 → (𝑅 ↾ 𝐴) ∈ V) | |
9 | rnexg 7916 | . . . . . 6 ⊢ ((𝑅 ↾ 𝐴) ∈ V → ran (𝑅 ↾ 𝐴) ∈ V) | |
10 | 8, 9 | syl 17 | . . . . 5 ⊢ (𝑅 ∈ 𝑊 → ran (𝑅 ↾ 𝐴) ∈ V) |
11 | 10 | 3ad2ant2 1131 | . . . 4 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝑅 ∈ 𝑊 ∧ (𝑆 ↾ 𝐴) ∈ 𝑋) → ran (𝑅 ↾ 𝐴) ∈ V) |
12 | rnexg 7916 | . . . . 5 ⊢ ((𝑆 ↾ 𝐴) ∈ 𝑋 → ran (𝑆 ↾ 𝐴) ∈ V) | |
13 | 12 | 3ad2ant3 1132 | . . . 4 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝑅 ∈ 𝑊 ∧ (𝑆 ↾ 𝐴) ∈ 𝑋) → ran (𝑆 ↾ 𝐴) ∈ V) |
14 | inxpxrn 37899 | . . . . 5 ⊢ ((𝑅 ∩ (𝐴 × ran (𝑅 ↾ 𝐴))) ⋉ (𝑆 ∩ (𝐴 × ran (𝑆 ↾ 𝐴)))) = ((𝑅 ⋉ 𝑆) ∩ (𝐴 × (ran (𝑅 ↾ 𝐴) × ran (𝑆 ↾ 𝐴)))) | |
15 | xrninxpex 37898 | . . . . 5 ⊢ ((𝐴 ∈ 𝑉 ∧ ran (𝑅 ↾ 𝐴) ∈ V ∧ ran (𝑆 ↾ 𝐴) ∈ V) → ((𝑅 ⋉ 𝑆) ∩ (𝐴 × (ran (𝑅 ↾ 𝐴) × ran (𝑆 ↾ 𝐴)))) ∈ V) | |
16 | 14, 15 | eqeltrid 2833 | . . . 4 ⊢ ((𝐴 ∈ 𝑉 ∧ ran (𝑅 ↾ 𝐴) ∈ V ∧ ran (𝑆 ↾ 𝐴) ∈ V) → ((𝑅 ∩ (𝐴 × ran (𝑅 ↾ 𝐴))) ⋉ (𝑆 ∩ (𝐴 × ran (𝑆 ↾ 𝐴)))) ∈ V) |
17 | 7, 11, 13, 16 | syl3anc 1368 | . . 3 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝑅 ∈ 𝑊 ∧ (𝑆 ↾ 𝐴) ∈ 𝑋) → ((𝑅 ∩ (𝐴 × ran (𝑅 ↾ 𝐴))) ⋉ (𝑆 ∩ (𝐴 × ran (𝑆 ↾ 𝐴)))) ∈ V) |
18 | 6, 17 | eqeltrid 2833 | . 2 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝑅 ∈ 𝑊 ∧ (𝑆 ↾ 𝐴) ∈ 𝑋) → ((𝑅 ↾ 𝐴) ⋉ (𝑆 ↾ 𝐴)) ∈ V) |
19 | 3, 18 | eqeltrrid 2834 | 1 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝑅 ∈ 𝑊 ∧ (𝑆 ↾ 𝐴) ∈ 𝑋) → (𝑅 ⋉ (𝑆 ↾ 𝐴)) ∈ V) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ w3a 1084 ∈ wcel 2098 Vcvv 3473 ∩ cin 3948 × cxp 5680 ran crn 5683 ↾ cres 5684 ⋉ cxrn 37680 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2699 ax-sep 5303 ax-nul 5310 ax-pow 5369 ax-pr 5433 ax-un 7746 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2529 df-eu 2558 df-clab 2706 df-cleq 2720 df-clel 2806 df-nfc 2881 df-ne 2938 df-ral 3059 df-rex 3068 df-rab 3431 df-v 3475 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-nul 4327 df-if 4533 df-pw 4608 df-sn 4633 df-pr 4635 df-op 4639 df-uni 4913 df-br 5153 df-opab 5215 df-mpt 5236 df-id 5580 df-xp 5688 df-rel 5689 df-cnv 5690 df-co 5691 df-dm 5692 df-rn 5693 df-res 5694 df-iota 6505 df-fun 6555 df-fn 6556 df-f 6557 df-fo 6559 df-fv 6561 df-1st 7999 df-2nd 8000 df-xrn 37875 |
This theorem is referenced by: xrnidresex 37911 xrncnvepresex 37912 |
Copyright terms: Public domain | W3C validator |