Users' Mathboxes Mathbox for Peter Mazsa < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  xrnresex Structured version   Visualization version   GIF version

Theorem xrnresex 37081
Description: Sufficient condition for a restricted range Cartesian product to be a set. (Contributed by Peter Mazsa, 16-Dec-2020.) (Revised by Peter Mazsa, 7-Sep-2021.)
Assertion
Ref Expression
xrnresex ((𝐴𝑉𝑅𝑊 ∧ (𝑆𝐴) ∈ 𝑋) → (𝑅 ⋉ (𝑆𝐴)) ∈ V)

Proof of Theorem xrnresex
StepHypRef Expression
1 xrnres3 37079 . . 3 ((𝑅𝑆) ↾ 𝐴) = ((𝑅𝐴) ⋉ (𝑆𝐴))
2 xrnres2 37078 . . 3 ((𝑅𝑆) ↾ 𝐴) = (𝑅 ⋉ (𝑆𝐴))
31, 2eqtr3i 2761 . 2 ((𝑅𝐴) ⋉ (𝑆𝐴)) = (𝑅 ⋉ (𝑆𝐴))
4 dfres4 36967 . . . 4 (𝑅𝐴) = (𝑅 ∩ (𝐴 × ran (𝑅𝐴)))
5 dfres4 36967 . . . 4 (𝑆𝐴) = (𝑆 ∩ (𝐴 × ran (𝑆𝐴)))
64, 5xrneq12i 37059 . . 3 ((𝑅𝐴) ⋉ (𝑆𝐴)) = ((𝑅 ∩ (𝐴 × ran (𝑅𝐴))) ⋉ (𝑆 ∩ (𝐴 × ran (𝑆𝐴))))
7 simp1 1136 . . . 4 ((𝐴𝑉𝑅𝑊 ∧ (𝑆𝐴) ∈ 𝑋) → 𝐴𝑉)
8 resexg 6019 . . . . . 6 (𝑅𝑊 → (𝑅𝐴) ∈ V)
9 rnexg 7877 . . . . . 6 ((𝑅𝐴) ∈ V → ran (𝑅𝐴) ∈ V)
108, 9syl 17 . . . . 5 (𝑅𝑊 → ran (𝑅𝐴) ∈ V)
11103ad2ant2 1134 . . . 4 ((𝐴𝑉𝑅𝑊 ∧ (𝑆𝐴) ∈ 𝑋) → ran (𝑅𝐴) ∈ V)
12 rnexg 7877 . . . . 5 ((𝑆𝐴) ∈ 𝑋 → ran (𝑆𝐴) ∈ V)
13123ad2ant3 1135 . . . 4 ((𝐴𝑉𝑅𝑊 ∧ (𝑆𝐴) ∈ 𝑋) → ran (𝑆𝐴) ∈ V)
14 inxpxrn 37070 . . . . 5 ((𝑅 ∩ (𝐴 × ran (𝑅𝐴))) ⋉ (𝑆 ∩ (𝐴 × ran (𝑆𝐴)))) = ((𝑅𝑆) ∩ (𝐴 × (ran (𝑅𝐴) × ran (𝑆𝐴))))
15 xrninxpex 37069 . . . . 5 ((𝐴𝑉 ∧ ran (𝑅𝐴) ∈ V ∧ ran (𝑆𝐴) ∈ V) → ((𝑅𝑆) ∩ (𝐴 × (ran (𝑅𝐴) × ran (𝑆𝐴)))) ∈ V)
1614, 15eqeltrid 2836 . . . 4 ((𝐴𝑉 ∧ ran (𝑅𝐴) ∈ V ∧ ran (𝑆𝐴) ∈ V) → ((𝑅 ∩ (𝐴 × ran (𝑅𝐴))) ⋉ (𝑆 ∩ (𝐴 × ran (𝑆𝐴)))) ∈ V)
177, 11, 13, 16syl3anc 1371 . . 3 ((𝐴𝑉𝑅𝑊 ∧ (𝑆𝐴) ∈ 𝑋) → ((𝑅 ∩ (𝐴 × ran (𝑅𝐴))) ⋉ (𝑆 ∩ (𝐴 × ran (𝑆𝐴)))) ∈ V)
186, 17eqeltrid 2836 . 2 ((𝐴𝑉𝑅𝑊 ∧ (𝑆𝐴) ∈ 𝑋) → ((𝑅𝐴) ⋉ (𝑆𝐴)) ∈ V)
193, 18eqeltrrid 2837 1 ((𝐴𝑉𝑅𝑊 ∧ (𝑆𝐴) ∈ 𝑋) → (𝑅 ⋉ (𝑆𝐴)) ∈ V)
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3a 1087  wcel 2106  Vcvv 3473  cin 3943   × cxp 5667  ran crn 5670  cres 5671  cxrn 36847
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2702  ax-sep 5292  ax-nul 5299  ax-pow 5356  ax-pr 5420  ax-un 7708
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2533  df-eu 2562  df-clab 2709  df-cleq 2723  df-clel 2809  df-nfc 2884  df-ne 2940  df-ral 3061  df-rex 3070  df-rab 3432  df-v 3475  df-dif 3947  df-un 3949  df-in 3951  df-ss 3961  df-nul 4319  df-if 4523  df-pw 4598  df-sn 4623  df-pr 4625  df-op 4629  df-uni 4902  df-br 5142  df-opab 5204  df-mpt 5225  df-id 5567  df-xp 5675  df-rel 5676  df-cnv 5677  df-co 5678  df-dm 5679  df-rn 5680  df-res 5681  df-iota 6484  df-fun 6534  df-fn 6535  df-f 6536  df-fo 6538  df-fv 6540  df-1st 7957  df-2nd 7958  df-xrn 37046
This theorem is referenced by:  xrnidresex  37082  xrncnvepresex  37083
  Copyright terms: Public domain W3C validator