| Mathbox for Peter Mazsa |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > xrnresex | Structured version Visualization version GIF version | ||
| Description: Sufficient condition for a restricted range Cartesian product to be a set. (Contributed by Peter Mazsa, 16-Dec-2020.) (Revised by Peter Mazsa, 7-Sep-2021.) |
| Ref | Expression |
|---|---|
| xrnresex | ⊢ ((𝐴 ∈ 𝑉 ∧ 𝑅 ∈ 𝑊 ∧ (𝑆 ↾ 𝐴) ∈ 𝑋) → (𝑅 ⋉ (𝑆 ↾ 𝐴)) ∈ V) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | xrnres3 38427 | . . 3 ⊢ ((𝑅 ⋉ 𝑆) ↾ 𝐴) = ((𝑅 ↾ 𝐴) ⋉ (𝑆 ↾ 𝐴)) | |
| 2 | xrnres2 38426 | . . 3 ⊢ ((𝑅 ⋉ 𝑆) ↾ 𝐴) = (𝑅 ⋉ (𝑆 ↾ 𝐴)) | |
| 3 | 1, 2 | eqtr3i 2761 | . 2 ⊢ ((𝑅 ↾ 𝐴) ⋉ (𝑆 ↾ 𝐴)) = (𝑅 ⋉ (𝑆 ↾ 𝐴)) |
| 4 | dfres4 38316 | . . . 4 ⊢ (𝑅 ↾ 𝐴) = (𝑅 ∩ (𝐴 × ran (𝑅 ↾ 𝐴))) | |
| 5 | dfres4 38316 | . . . 4 ⊢ (𝑆 ↾ 𝐴) = (𝑆 ∩ (𝐴 × ran (𝑆 ↾ 𝐴))) | |
| 6 | 4, 5 | xrneq12i 38407 | . . 3 ⊢ ((𝑅 ↾ 𝐴) ⋉ (𝑆 ↾ 𝐴)) = ((𝑅 ∩ (𝐴 × ran (𝑅 ↾ 𝐴))) ⋉ (𝑆 ∩ (𝐴 × ran (𝑆 ↾ 𝐴)))) |
| 7 | simp1 1136 | . . . 4 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝑅 ∈ 𝑊 ∧ (𝑆 ↾ 𝐴) ∈ 𝑋) → 𝐴 ∈ 𝑉) | |
| 8 | resexg 6019 | . . . . . 6 ⊢ (𝑅 ∈ 𝑊 → (𝑅 ↾ 𝐴) ∈ V) | |
| 9 | rnexg 7903 | . . . . . 6 ⊢ ((𝑅 ↾ 𝐴) ∈ V → ran (𝑅 ↾ 𝐴) ∈ V) | |
| 10 | 8, 9 | syl 17 | . . . . 5 ⊢ (𝑅 ∈ 𝑊 → ran (𝑅 ↾ 𝐴) ∈ V) |
| 11 | 10 | 3ad2ant2 1134 | . . . 4 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝑅 ∈ 𝑊 ∧ (𝑆 ↾ 𝐴) ∈ 𝑋) → ran (𝑅 ↾ 𝐴) ∈ V) |
| 12 | rnexg 7903 | . . . . 5 ⊢ ((𝑆 ↾ 𝐴) ∈ 𝑋 → ran (𝑆 ↾ 𝐴) ∈ V) | |
| 13 | 12 | 3ad2ant3 1135 | . . . 4 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝑅 ∈ 𝑊 ∧ (𝑆 ↾ 𝐴) ∈ 𝑋) → ran (𝑆 ↾ 𝐴) ∈ V) |
| 14 | inxpxrn 38418 | . . . . 5 ⊢ ((𝑅 ∩ (𝐴 × ran (𝑅 ↾ 𝐴))) ⋉ (𝑆 ∩ (𝐴 × ran (𝑆 ↾ 𝐴)))) = ((𝑅 ⋉ 𝑆) ∩ (𝐴 × (ran (𝑅 ↾ 𝐴) × ran (𝑆 ↾ 𝐴)))) | |
| 15 | xrninxpex 38417 | . . . . 5 ⊢ ((𝐴 ∈ 𝑉 ∧ ran (𝑅 ↾ 𝐴) ∈ V ∧ ran (𝑆 ↾ 𝐴) ∈ V) → ((𝑅 ⋉ 𝑆) ∩ (𝐴 × (ran (𝑅 ↾ 𝐴) × ran (𝑆 ↾ 𝐴)))) ∈ V) | |
| 16 | 14, 15 | eqeltrid 2839 | . . . 4 ⊢ ((𝐴 ∈ 𝑉 ∧ ran (𝑅 ↾ 𝐴) ∈ V ∧ ran (𝑆 ↾ 𝐴) ∈ V) → ((𝑅 ∩ (𝐴 × ran (𝑅 ↾ 𝐴))) ⋉ (𝑆 ∩ (𝐴 × ran (𝑆 ↾ 𝐴)))) ∈ V) |
| 17 | 7, 11, 13, 16 | syl3anc 1373 | . . 3 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝑅 ∈ 𝑊 ∧ (𝑆 ↾ 𝐴) ∈ 𝑋) → ((𝑅 ∩ (𝐴 × ran (𝑅 ↾ 𝐴))) ⋉ (𝑆 ∩ (𝐴 × ran (𝑆 ↾ 𝐴)))) ∈ V) |
| 18 | 6, 17 | eqeltrid 2839 | . 2 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝑅 ∈ 𝑊 ∧ (𝑆 ↾ 𝐴) ∈ 𝑋) → ((𝑅 ↾ 𝐴) ⋉ (𝑆 ↾ 𝐴)) ∈ V) |
| 19 | 3, 18 | eqeltrrid 2840 | 1 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝑅 ∈ 𝑊 ∧ (𝑆 ↾ 𝐴) ∈ 𝑋) → (𝑅 ⋉ (𝑆 ↾ 𝐴)) ∈ V) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ w3a 1086 ∈ wcel 2109 Vcvv 3464 ∩ cin 3930 × cxp 5657 ran crn 5660 ↾ cres 5661 ⋉ cxrn 38203 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2708 ax-sep 5271 ax-nul 5281 ax-pow 5340 ax-pr 5407 ax-un 7734 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2728 df-clel 2810 df-nfc 2886 df-ne 2934 df-ral 3053 df-rex 3062 df-rab 3421 df-v 3466 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4889 df-br 5125 df-opab 5187 df-mpt 5207 df-id 5553 df-xp 5665 df-rel 5666 df-cnv 5667 df-co 5668 df-dm 5669 df-rn 5670 df-res 5671 df-iota 6489 df-fun 6538 df-fn 6539 df-f 6540 df-fo 6542 df-fv 6544 df-1st 7993 df-2nd 7994 df-xrn 38394 |
| This theorem is referenced by: xrnidresex 38430 xrncnvepresex 38431 |
| Copyright terms: Public domain | W3C validator |