MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  zfausab Structured version   Visualization version   GIF version

Theorem zfausab 5265
Description: Separation Scheme (Aussonderung) in terms of a class abstraction. (Contributed by NM, 8-Jun-1994.)
Hypothesis
Ref Expression
zfausab.1 𝐴 ∈ V
Assertion
Ref Expression
zfausab {𝑥 ∣ (𝑥𝐴𝜑)} ∈ V
Distinct variable group:   𝑥,𝐴
Allowed substitution hint:   𝜑(𝑥)

Proof of Theorem zfausab
StepHypRef Expression
1 zfausab.1 . 2 𝐴 ∈ V
2 ssab2 4024 . 2 {𝑥 ∣ (𝑥𝐴𝜑)} ⊆ 𝐴
31, 2ssexi 5255 1 {𝑥 ∣ (𝑥𝐴𝜑)} ∈ V
Colors of variables: wff setvar class
Syntax hints:  wa 395  wcel 2111  {cab 2709  Vcvv 3436
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-ext 2703  ax-sep 5229
This theorem depends on definitions:  df-bi 207  df-an 396  df-3an 1088  df-tru 1544  df-ex 1781  df-sb 2068  df-clab 2710  df-cleq 2723  df-clel 2806  df-rab 3396  df-v 3438  df-in 3904  df-ss 3914
This theorem is referenced by:  rabfmpunirn  32627
  Copyright terms: Public domain W3C validator