| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > zfausab | Structured version Visualization version GIF version | ||
| Description: Separation Scheme (Aussonderung) in terms of a class abstraction. (Contributed by NM, 8-Jun-1994.) |
| Ref | Expression |
|---|---|
| zfausab.1 | ⊢ 𝐴 ∈ V |
| Ref | Expression |
|---|---|
| zfausab | ⊢ {𝑥 ∣ (𝑥 ∈ 𝐴 ∧ 𝜑)} ∈ V |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | zfausab.1 | . 2 ⊢ 𝐴 ∈ V | |
| 2 | ssab2 4045 | . 2 ⊢ {𝑥 ∣ (𝑥 ∈ 𝐴 ∧ 𝜑)} ⊆ 𝐴 | |
| 3 | 1, 2 | ssexi 5280 | 1 ⊢ {𝑥 ∣ (𝑥 ∈ 𝐴 ∧ 𝜑)} ∈ V |
| Colors of variables: wff setvar class |
| Syntax hints: ∧ wa 395 ∈ wcel 2109 {cab 2708 Vcvv 3450 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2702 ax-sep 5254 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1088 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2709 df-cleq 2722 df-clel 2804 df-rab 3409 df-v 3452 df-in 3924 df-ss 3934 |
| This theorem is referenced by: rabfmpunirn 32584 |
| Copyright terms: Public domain | W3C validator |