![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > zfausab | Structured version Visualization version GIF version |
Description: Separation Scheme (Aussonderung) in terms of a class abstraction. (Contributed by NM, 8-Jun-1994.) |
Ref | Expression |
---|---|
zfausab.1 | ⊢ 𝐴 ∈ V |
Ref | Expression |
---|---|
zfausab | ⊢ {𝑥 ∣ (𝑥 ∈ 𝐴 ∧ 𝜑)} ∈ V |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | zfausab.1 | . 2 ⊢ 𝐴 ∈ V | |
2 | ssab2 4089 | . 2 ⊢ {𝑥 ∣ (𝑥 ∈ 𝐴 ∧ 𝜑)} ⊆ 𝐴 | |
3 | 1, 2 | ssexi 5328 | 1 ⊢ {𝑥 ∣ (𝑥 ∈ 𝐴 ∧ 𝜑)} ∈ V |
Colors of variables: wff setvar class |
Syntax hints: ∧ wa 395 ∈ wcel 2106 {cab 2712 Vcvv 3478 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-ext 2706 ax-sep 5302 |
This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1088 df-tru 1540 df-ex 1777 df-sb 2063 df-clab 2713 df-cleq 2727 df-clel 2814 df-rab 3434 df-v 3480 df-in 3970 df-ss 3980 |
This theorem is referenced by: rabfmpunirn 32670 |
Copyright terms: Public domain | W3C validator |