Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > zfausab | Structured version Visualization version GIF version |
Description: Separation Scheme (Aussonderung) in terms of a class abstraction. (Contributed by NM, 8-Jun-1994.) |
Ref | Expression |
---|---|
zfausab.1 | ⊢ 𝐴 ∈ V |
Ref | Expression |
---|---|
zfausab | ⊢ {𝑥 ∣ (𝑥 ∈ 𝐴 ∧ 𝜑)} ∈ V |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | zfausab.1 | . 2 ⊢ 𝐴 ∈ V | |
2 | ssab2 4024 | . 2 ⊢ {𝑥 ∣ (𝑥 ∈ 𝐴 ∧ 𝜑)} ⊆ 𝐴 | |
3 | 1, 2 | ssexi 5266 | 1 ⊢ {𝑥 ∣ (𝑥 ∈ 𝐴 ∧ 𝜑)} ∈ V |
Colors of variables: wff setvar class |
Syntax hints: ∧ wa 396 ∈ wcel 2105 {cab 2713 Vcvv 3441 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-ext 2707 ax-sep 5243 |
This theorem depends on definitions: df-bi 206 df-an 397 df-tru 1543 df-ex 1781 df-sb 2067 df-clab 2714 df-cleq 2728 df-clel 2814 df-rab 3404 df-v 3443 df-in 3905 df-ss 3915 |
This theorem is referenced by: rabfmpunirn 31277 |
Copyright terms: Public domain | W3C validator |