| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > zfausab | Structured version Visualization version GIF version | ||
| Description: Separation Scheme (Aussonderung) in terms of a class abstraction. (Contributed by NM, 8-Jun-1994.) |
| Ref | Expression |
|---|---|
| zfausab.1 | ⊢ 𝐴 ∈ V |
| Ref | Expression |
|---|---|
| zfausab | ⊢ {𝑥 ∣ (𝑥 ∈ 𝐴 ∧ 𝜑)} ∈ V |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | zfausab.1 | . 2 ⊢ 𝐴 ∈ V | |
| 2 | ssab2 4078 | . 2 ⊢ {𝑥 ∣ (𝑥 ∈ 𝐴 ∧ 𝜑)} ⊆ 𝐴 | |
| 3 | 1, 2 | ssexi 5321 | 1 ⊢ {𝑥 ∣ (𝑥 ∈ 𝐴 ∧ 𝜑)} ∈ V |
| Colors of variables: wff setvar class |
| Syntax hints: ∧ wa 395 ∈ wcel 2107 {cab 2713 Vcvv 3479 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-ext 2707 ax-sep 5295 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1088 df-tru 1542 df-ex 1779 df-sb 2064 df-clab 2714 df-cleq 2728 df-clel 2815 df-rab 3436 df-v 3481 df-in 3957 df-ss 3967 |
| This theorem is referenced by: rabfmpunirn 32664 |
| Copyright terms: Public domain | W3C validator |