Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > zfausab | Structured version Visualization version GIF version |
Description: Separation Scheme (Aussonderung) in terms of a class abstraction. (Contributed by NM, 8-Jun-1994.) |
Ref | Expression |
---|---|
zfausab.1 | ⊢ 𝐴 ∈ V |
Ref | Expression |
---|---|
zfausab | ⊢ {𝑥 ∣ (𝑥 ∈ 𝐴 ∧ 𝜑)} ∈ V |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | zfausab.1 | . 2 ⊢ 𝐴 ∈ V | |
2 | ssab2 4016 | . 2 ⊢ {𝑥 ∣ (𝑥 ∈ 𝐴 ∧ 𝜑)} ⊆ 𝐴 | |
3 | 1, 2 | ssexi 5249 | 1 ⊢ {𝑥 ∣ (𝑥 ∈ 𝐴 ∧ 𝜑)} ∈ V |
Colors of variables: wff setvar class |
Syntax hints: ∧ wa 395 ∈ wcel 2109 {cab 2716 Vcvv 3430 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1801 ax-4 1815 ax-5 1916 ax-6 1974 ax-7 2014 ax-8 2111 ax-9 2119 ax-ext 2710 ax-sep 5226 |
This theorem depends on definitions: df-bi 206 df-an 396 df-tru 1544 df-ex 1786 df-sb 2071 df-clab 2717 df-cleq 2731 df-clel 2817 df-rab 3074 df-v 3432 df-in 3898 df-ss 3908 |
This theorem is referenced by: rabfmpunirn 30969 |
Copyright terms: Public domain | W3C validator |