![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ssexi | Structured version Visualization version GIF version |
Description: The subset of a set is also a set. (Contributed by NM, 9-Sep-1993.) |
Ref | Expression |
---|---|
ssexi.1 | ⊢ 𝐵 ∈ V |
ssexi.2 | ⊢ 𝐴 ⊆ 𝐵 |
Ref | Expression |
---|---|
ssexi | ⊢ 𝐴 ∈ V |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ssexi.2 | . 2 ⊢ 𝐴 ⊆ 𝐵 | |
2 | ssexi.1 | . . 3 ⊢ 𝐵 ∈ V | |
3 | 2 | ssex 5339 | . 2 ⊢ (𝐴 ⊆ 𝐵 → 𝐴 ∈ V) |
4 | 1, 3 | ax-mp 5 | 1 ⊢ 𝐴 ∈ V |
Colors of variables: wff setvar class |
Syntax hints: ∈ wcel 2108 Vcvv 3488 ⊆ wss 3976 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2711 ax-sep 5317 |
This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1089 df-tru 1540 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-rab 3444 df-v 3490 df-in 3983 df-ss 3993 |
This theorem is referenced by: abex 5344 zfausab 5350 ord3ex 5405 epse 5682 opabex 7257 opabresex2 7502 mptexw 7993 fvclex 7999 oprabex 8017 mpoexw 8119 tfrlem16 8449 fosetex 8916 f1osetex 8917 dffi3 9500 r0weon 10081 dfac3 10190 dfac5lem4 10195 dfac5lem4OLD 10197 dfac2b 10200 hsmexlem6 10500 domtriomlem 10511 axdc3lem 10519 ac6 10549 brdom7disj 10600 brdom6disj 10601 niex 10950 enqex 10991 npex 11055 nrex1 11133 enrex 11136 reex 11275 nnex 12299 zex 12648 qex 13026 ixxex 13418 ltweuz 14012 seqexw 14068 cshwsexa 14872 prmex 16724 prdsval 17515 prdsle 17522 sectfval 17812 sscpwex 17876 issubc 17899 isfunc 17928 fullfunc 17973 fthfunc 17974 isfull 17977 isfth 17981 ipoval 18600 letsr 18663 ressmulgnn 19116 nmznsg 19208 eqgfval 19216 isghm 19255 isghmOLD 19256 lpival 21357 xrsle 21423 znle 21574 cssval 21723 pjfval 21749 ltbval 22084 opsrle 22088 istopon 22939 dmtopon 22950 leordtval2 23241 lecldbas 23248 xkoopn 23618 xkouni 23628 xkoccn 23648 xkoco1cn 23686 xkoco2cn 23687 xkococn 23689 xkoinjcn 23716 uzrest 23926 ustfn 24231 ustn0 24250 isphtpc 25045 tcphex 25270 tchnmfval 25281 bcthlem1 25377 bcthlem5 25381 dyadmbl 25654 itg2seq 25797 aannenlem3 26390 psercn 26488 abelth 26503 vmadivsum 27544 rpvmasumlem 27549 mudivsum 27592 selberglem1 27607 selberglem2 27608 selberg2lem 27612 selberg2 27613 pntrsumo1 27627 selbergr 27630 iscgrg 28538 isismt 28560 ishlg 28628 ishpg 28785 iscgra 28835 isinag 28864 isleag 28873 wksv 29655 sspval 30755 ajfval 30841 shex 31244 chex 31258 hmopex 31907 ressplusf 32930 inftmrel 33160 isinftm 33161 constrsuc 33728 dmvlsiga 34093 measbase 34161 ismeas 34163 isrnmeas 34164 faeval 34210 eulerpartlemmf 34340 eulerpartlemgvv 34341 signsplypnf 34527 signsply0 34528 afsval 34648 kur14lem7 35180 kur14lem9 35182 satfvsuclem1 35327 fmlasuc0 35352 mppsval 35540 dfon2lem7 35753 colinearex 36024 poimirlem4 37584 heibor1lem 37769 rrnval 37787 lsatset 38946 lcvfbr 38976 cmtfvalN 39166 cvrfval 39224 lineset 39695 psubspset 39701 psubclsetN 39893 lautset 40039 pautsetN 40055 tendoset 40716 dicval 41133 ltex 42240 leex 42241 sn-isghm 42628 eldiophb 42713 pellexlem3 42787 pellexlem5 42789 onfrALTlem3VD 44858 dmvolsal 46267 smfresal 46709 smfliminflem 46751 upwordsseti 46804 amgmlemALT 48897 |
Copyright terms: Public domain | W3C validator |