Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > ssexi | Structured version Visualization version GIF version |
Description: The subset of a set is also a set. (Contributed by NM, 9-Sep-1993.) |
Ref | Expression |
---|---|
ssexi.1 | ⊢ 𝐵 ∈ V |
ssexi.2 | ⊢ 𝐴 ⊆ 𝐵 |
Ref | Expression |
---|---|
ssexi | ⊢ 𝐴 ∈ V |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ssexi.2 | . 2 ⊢ 𝐴 ⊆ 𝐵 | |
2 | ssexi.1 | . . 3 ⊢ 𝐵 ∈ V | |
3 | 2 | ssex 5245 | . 2 ⊢ (𝐴 ⊆ 𝐵 → 𝐴 ∈ V) |
4 | 1, 3 | ax-mp 5 | 1 ⊢ 𝐴 ∈ V |
Colors of variables: wff setvar class |
Syntax hints: ∈ wcel 2106 Vcvv 3432 ⊆ wss 3887 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-ext 2709 ax-sep 5223 |
This theorem depends on definitions: df-bi 206 df-an 397 df-tru 1542 df-ex 1783 df-sb 2068 df-clab 2716 df-cleq 2730 df-clel 2816 df-rab 3073 df-v 3434 df-in 3894 df-ss 3904 |
This theorem is referenced by: zfausab 5254 ord3ex 5310 epse 5572 opabex 7096 opabresex2 7327 mptexw 7795 fvclex 7801 oprabex 7819 mpoexw 7919 tfrlem16 8224 fosetex 8646 f1osetex 8647 dffi3 9190 r0weon 9768 dfac3 9877 dfac5lem4 9882 dfac2b 9886 hsmexlem6 10187 domtriomlem 10198 axdc3lem 10206 ac6 10236 brdom7disj 10287 brdom6disj 10288 niex 10637 enqex 10678 npex 10742 nrex1 10820 enrex 10823 reex 10962 nnex 11979 zex 12328 qex 12701 ixxex 13090 ltweuz 13681 seqexw 13737 prmex 16382 prdsval 17166 prdsle 17173 sectfval 17463 sscpwex 17527 issubc 17550 isfunc 17579 fullfunc 17622 fthfunc 17623 isfull 17626 isfth 17630 ipoval 18248 letsr 18311 nmznsg 18796 eqgfval 18804 isghm 18834 lpival 20516 xrsle 20618 znle 20740 cssval 20887 pjfval 20913 ltbval 21244 opsrle 21248 istopon 22061 dmtopon 22072 leordtval2 22363 lecldbas 22370 xkoopn 22740 xkouni 22750 xkoccn 22770 xkoco1cn 22808 xkoco2cn 22809 xkococn 22811 xkoinjcn 22838 uzrest 23048 ustfn 23353 ustn0 23372 isphtpc 24157 tcphex 24381 tchnmfval 24392 bcthlem1 24488 bcthlem5 24492 dyadmbl 24764 itg2seq 24907 aannenlem3 25490 psercn 25585 abelth 25600 vmadivsum 26630 rpvmasumlem 26635 mudivsum 26678 selberglem1 26693 selberglem2 26694 selberg2lem 26698 selberg2 26699 pntrsumo1 26713 selbergr 26716 iscgrg 26873 isismt 26895 ishlg 26963 ishpg 27120 iscgra 27170 isinag 27199 isleag 27208 wksv 27986 sspval 29085 ajfval 29171 shex 29574 chex 29588 hmopex 30237 ressplusf 31235 ressmulgnn 31292 inftmrel 31434 isinftm 31435 dmvlsiga 32097 measbase 32165 ismeas 32167 isrnmeas 32168 faeval 32214 eulerpartlemmf 32342 eulerpartlemgvv 32343 signsplypnf 32529 signsply0 32530 afsval 32651 kur14lem7 33174 kur14lem9 33176 satfvsuclem1 33321 fmlasuc0 33346 mppsval 33534 dfon2lem7 33765 colinearex 34362 poimirlem4 35781 heibor1lem 35967 rrnval 35985 lsatset 37004 lcvfbr 37034 cmtfvalN 37224 cvrfval 37282 lineset 37752 psubspset 37758 psubclsetN 37950 lautset 38096 pautsetN 38112 tendoset 38773 dicval 39190 eldiophb 40579 pellexlem3 40653 pellexlem5 40655 onfrALTlem3VD 42507 dmvolsal 43885 smfresal 44322 smfliminflem 44363 amgmlemALT 46507 upwordsseti 46520 |
Copyright terms: Public domain | W3C validator |