| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ssexi | Structured version Visualization version GIF version | ||
| Description: The subset of a set is also a set. (Contributed by NM, 9-Sep-1993.) |
| Ref | Expression |
|---|---|
| ssexi.1 | ⊢ 𝐵 ∈ V |
| ssexi.2 | ⊢ 𝐴 ⊆ 𝐵 |
| Ref | Expression |
|---|---|
| ssexi | ⊢ 𝐴 ∈ V |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ssexi.2 | . 2 ⊢ 𝐴 ⊆ 𝐵 | |
| 2 | ssexi.1 | . . 3 ⊢ 𝐵 ∈ V | |
| 3 | 2 | ssex 5291 | . 2 ⊢ (𝐴 ⊆ 𝐵 → 𝐴 ∈ V) |
| 4 | 1, 3 | ax-mp 5 | 1 ⊢ 𝐴 ∈ V |
| Colors of variables: wff setvar class |
| Syntax hints: ∈ wcel 2108 Vcvv 3459 ⊆ wss 3926 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2707 ax-sep 5266 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1088 df-tru 1543 df-ex 1780 df-sb 2065 df-clab 2714 df-cleq 2727 df-clel 2809 df-rab 3416 df-v 3461 df-in 3933 df-ss 3943 |
| This theorem is referenced by: abex 5296 zfausab 5302 ord3ex 5357 epse 5636 opabex 7212 opabresex2 7459 mptexw 7951 fvclex 7957 oprabex 7975 mpoexw 8077 tfrlem16 8407 fosetex 8872 f1osetex 8873 dffi3 9443 r0weon 10026 dfac3 10135 dfac5lem4 10140 dfac5lem4OLD 10142 dfac2b 10145 hsmexlem6 10445 domtriomlem 10456 axdc3lem 10464 ac6 10494 brdom7disj 10545 brdom6disj 10546 niex 10895 enqex 10936 npex 11000 nrex1 11078 enrex 11081 reex 11220 nnex 12246 zex 12597 qex 12977 ixxex 13373 ltweuz 13979 seqexw 14035 cshwsexa 14842 prmex 16696 prdsval 17469 prdsle 17476 sectfval 17764 sscpwex 17828 issubc 17848 isfunc 17877 fullfunc 17921 fthfunc 17922 isfull 17925 isfth 17929 ipoval 18540 letsr 18603 ressmulgnn 19059 nmznsg 19151 eqgfval 19159 isghm 19198 isghmOLD 19199 lpival 21285 xrsle 21350 znle 21497 cssval 21642 pjfval 21666 ltbval 22001 opsrle 22005 istopon 22850 dmtopon 22861 leordtval2 23150 lecldbas 23157 xkoopn 23527 xkouni 23537 xkoccn 23557 xkoco1cn 23595 xkoco2cn 23596 xkococn 23598 xkoinjcn 23625 uzrest 23835 ustfn 24140 ustn0 24159 isphtpc 24944 tcphex 25169 tchnmfval 25180 bcthlem1 25276 bcthlem5 25280 dyadmbl 25553 itg2seq 25695 aannenlem3 26290 psercn 26388 abelth 26403 vmadivsum 27445 rpvmasumlem 27450 mudivsum 27493 selberglem1 27508 selberglem2 27509 selberg2lem 27513 selberg2 27514 pntrsumo1 27528 selbergr 27531 iscgrg 28491 isismt 28513 ishlg 28581 ishpg 28738 iscgra 28788 isinag 28817 isleag 28826 wksv 29599 sspval 30704 ajfval 30790 shex 31193 chex 31207 hmopex 31856 ressplusf 32939 inftmrel 33178 isinftm 33179 constrsuc 33772 dmvlsiga 34160 measbase 34228 ismeas 34230 isrnmeas 34231 faeval 34277 eulerpartlemmf 34407 eulerpartlemgvv 34408 signsplypnf 34582 signsply0 34583 afsval 34703 kur14lem7 35234 kur14lem9 35236 satfvsuclem1 35381 fmlasuc0 35406 mppsval 35594 dfon2lem7 35807 colinearex 36078 poimirlem4 37648 heibor1lem 37833 rrnval 37851 lsatset 39008 lcvfbr 39038 cmtfvalN 39228 cvrfval 39286 lineset 39757 psubspset 39763 psubclsetN 39955 lautset 40101 pautsetN 40117 tendoset 40778 dicval 41195 ltex 42296 leex 42297 sn-isghm 42696 eldiophb 42780 pellexlem3 42854 pellexlem5 42856 onfrALTlem3VD 44911 modelaxreplem1 45003 rpex 45373 dmvolsal 46375 smfresal 46817 smfliminflem 46859 upwordsseti 46914 sectfn 48999 amgmlemALT 49667 |
| Copyright terms: Public domain | W3C validator |