![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ssexi | Structured version Visualization version GIF version |
Description: The subset of a set is also a set. (Contributed by NM, 9-Sep-1993.) |
Ref | Expression |
---|---|
ssexi.1 | ⊢ 𝐵 ∈ V |
ssexi.2 | ⊢ 𝐴 ⊆ 𝐵 |
Ref | Expression |
---|---|
ssexi | ⊢ 𝐴 ∈ V |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ssexi.2 | . 2 ⊢ 𝐴 ⊆ 𝐵 | |
2 | ssexi.1 | . . 3 ⊢ 𝐵 ∈ V | |
3 | 2 | ssex 5326 | . 2 ⊢ (𝐴 ⊆ 𝐵 → 𝐴 ∈ V) |
4 | 1, 3 | ax-mp 5 | 1 ⊢ 𝐴 ∈ V |
Colors of variables: wff setvar class |
Syntax hints: ∈ wcel 2105 Vcvv 3477 ⊆ wss 3962 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1791 ax-4 1805 ax-5 1907 ax-6 1964 ax-7 2004 ax-8 2107 ax-9 2115 ax-ext 2705 ax-sep 5301 |
This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1088 df-tru 1539 df-ex 1776 df-sb 2062 df-clab 2712 df-cleq 2726 df-clel 2813 df-rab 3433 df-v 3479 df-in 3969 df-ss 3979 |
This theorem is referenced by: abex 5331 zfausab 5337 ord3ex 5392 epse 5670 opabex 7239 opabresex2 7484 mptexw 7975 fvclex 7981 oprabex 7999 mpoexw 8101 tfrlem16 8431 fosetex 8896 f1osetex 8897 dffi3 9468 r0weon 10049 dfac3 10158 dfac5lem4 10163 dfac5lem4OLD 10165 dfac2b 10168 hsmexlem6 10468 domtriomlem 10479 axdc3lem 10487 ac6 10517 brdom7disj 10568 brdom6disj 10569 niex 10918 enqex 10959 npex 11023 nrex1 11101 enrex 11104 reex 11243 nnex 12269 zex 12619 qex 13000 ixxex 13394 ltweuz 13998 seqexw 14054 cshwsexa 14858 prmex 16710 prdsval 17501 prdsle 17508 sectfval 17798 sscpwex 17862 issubc 17885 isfunc 17914 fullfunc 17959 fthfunc 17960 isfull 17963 isfth 17967 ipoval 18587 letsr 18650 ressmulgnn 19106 nmznsg 19198 eqgfval 19206 isghm 19245 isghmOLD 19246 lpival 21351 xrsle 21417 znle 21568 cssval 21717 pjfval 21743 ltbval 22078 opsrle 22082 istopon 22933 dmtopon 22944 leordtval2 23235 lecldbas 23242 xkoopn 23612 xkouni 23622 xkoccn 23642 xkoco1cn 23680 xkoco2cn 23681 xkococn 23683 xkoinjcn 23710 uzrest 23920 ustfn 24225 ustn0 24244 isphtpc 25039 tcphex 25264 tchnmfval 25275 bcthlem1 25371 bcthlem5 25375 dyadmbl 25648 itg2seq 25791 aannenlem3 26386 psercn 26484 abelth 26499 vmadivsum 27540 rpvmasumlem 27545 mudivsum 27588 selberglem1 27603 selberglem2 27604 selberg2lem 27608 selberg2 27609 pntrsumo1 27623 selbergr 27626 iscgrg 28534 isismt 28556 ishlg 28624 ishpg 28781 iscgra 28831 isinag 28860 isleag 28869 wksv 29651 sspval 30751 ajfval 30837 shex 31240 chex 31254 hmopex 31903 ressplusf 32932 inftmrel 33169 isinftm 33170 constrsuc 33742 dmvlsiga 34109 measbase 34177 ismeas 34179 isrnmeas 34180 faeval 34226 eulerpartlemmf 34356 eulerpartlemgvv 34357 signsplypnf 34543 signsply0 34544 afsval 34664 kur14lem7 35196 kur14lem9 35198 satfvsuclem1 35343 fmlasuc0 35368 mppsval 35556 dfon2lem7 35770 colinearex 36041 poimirlem4 37610 heibor1lem 37795 rrnval 37813 lsatset 38971 lcvfbr 39001 cmtfvalN 39191 cvrfval 39249 lineset 39720 psubspset 39726 psubclsetN 39918 lautset 40064 pautsetN 40080 tendoset 40741 dicval 41158 ltex 42264 leex 42265 sn-isghm 42659 eldiophb 42744 pellexlem3 42818 pellexlem5 42820 onfrALTlem3VD 44884 modelaxreplem1 44942 rpex 45295 dmvolsal 46301 smfresal 46743 smfliminflem 46785 upwordsseti 46838 amgmlemALT 49033 |
Copyright terms: Public domain | W3C validator |