| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ssexi | Structured version Visualization version GIF version | ||
| Description: The subset of a set is also a set. (Contributed by NM, 9-Sep-1993.) |
| Ref | Expression |
|---|---|
| ssexi.1 | ⊢ 𝐵 ∈ V |
| ssexi.2 | ⊢ 𝐴 ⊆ 𝐵 |
| Ref | Expression |
|---|---|
| ssexi | ⊢ 𝐴 ∈ V |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ssexi.2 | . 2 ⊢ 𝐴 ⊆ 𝐵 | |
| 2 | ssexi.1 | . . 3 ⊢ 𝐵 ∈ V | |
| 3 | 2 | ssex 5271 | . 2 ⊢ (𝐴 ⊆ 𝐵 → 𝐴 ∈ V) |
| 4 | 1, 3 | ax-mp 5 | 1 ⊢ 𝐴 ∈ V |
| Colors of variables: wff setvar class |
| Syntax hints: ∈ wcel 2109 Vcvv 3444 ⊆ wss 3911 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 ax-sep 5246 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1088 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-rab 3403 df-v 3446 df-in 3918 df-ss 3928 |
| This theorem is referenced by: abex 5276 zfausab 5282 ord3ex 5337 epse 5613 opabex 7177 opabresex2 7424 mptexw 7912 fvclex 7918 oprabex 7935 mpoexw 8037 tfrlem16 8339 fosetex 8809 f1osetex 8810 dffi3 9359 r0weon 9944 dfac3 10053 dfac5lem4 10058 dfac5lem4OLD 10060 dfac2b 10063 hsmexlem6 10363 domtriomlem 10374 axdc3lem 10382 ac6 10412 brdom7disj 10463 brdom6disj 10464 niex 10813 enqex 10854 npex 10918 nrex1 10996 enrex 10999 reex 11138 nnex 12171 zex 12517 qex 12899 ixxex 13296 ltweuz 13905 seqexw 13961 cshwsexa 14767 prmex 16625 prdsval 17396 prdsle 17403 xrsle 17545 sectfval 17695 sscpwex 17759 issubc 17779 isfunc 17808 fullfunc 17852 fthfunc 17853 isfull 17856 isfth 17860 ipoval 18473 letsr 18536 ressmulgnn 18992 nmznsg 19084 eqgfval 19092 isghm 19131 isghmOLD 19132 lpival 21268 znle 21480 cssval 21626 pjfval 21650 ltbval 21985 opsrle 21989 istopon 22834 dmtopon 22845 leordtval2 23134 lecldbas 23141 xkoopn 23511 xkouni 23521 xkoccn 23541 xkoco1cn 23579 xkoco2cn 23580 xkococn 23582 xkoinjcn 23609 uzrest 23819 ustfn 24124 ustn0 24143 isphtpc 24928 tcphex 25152 tchnmfval 25163 bcthlem1 25259 bcthlem5 25263 dyadmbl 25536 itg2seq 25678 aannenlem3 26273 psercn 26371 abelth 26386 vmadivsum 27428 rpvmasumlem 27433 mudivsum 27476 selberglem1 27491 selberglem2 27492 selberg2lem 27496 selberg2 27497 pntrsumo1 27511 selbergr 27514 iscgrg 28494 isismt 28516 ishlg 28584 ishpg 28741 iscgra 28791 isinag 28820 isleag 28829 wksv 29602 sspval 30704 ajfval 30790 shex 31193 chex 31207 hmopex 31856 ressplusf 32937 inftmrel 33151 isinftm 33152 constrsuc 33723 dmvlsiga 34114 measbase 34182 ismeas 34184 isrnmeas 34185 faeval 34231 eulerpartlemmf 34361 eulerpartlemgvv 34362 signsplypnf 34536 signsply0 34537 afsval 34657 kur14lem7 35194 kur14lem9 35196 satfvsuclem1 35341 fmlasuc0 35366 mppsval 35554 dfon2lem7 35772 colinearex 36043 poimirlem4 37613 heibor1lem 37798 rrnval 37816 lsatset 38978 lcvfbr 39008 cmtfvalN 39198 cvrfval 39256 lineset 39727 psubspset 39733 psubclsetN 39925 lautset 40071 pautsetN 40087 tendoset 40748 dicval 41165 ltex 42228 leex 42229 sn-isghm 42656 eldiophb 42740 pellexlem3 42814 pellexlem5 42816 onfrALTlem3VD 44871 modelaxreplem1 44963 rpex 45337 dmvolsal 46339 smfresal 46781 smfliminflem 46823 upwordsseti 46878 sectfn 49013 amgmlemALT 49787 |
| Copyright terms: Public domain | W3C validator |