Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > ssexi | Structured version Visualization version GIF version |
Description: The subset of a set is also a set. (Contributed by NM, 9-Sep-1993.) |
Ref | Expression |
---|---|
ssexi.1 | ⊢ 𝐵 ∈ V |
ssexi.2 | ⊢ 𝐴 ⊆ 𝐵 |
Ref | Expression |
---|---|
ssexi | ⊢ 𝐴 ∈ V |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ssexi.2 | . 2 ⊢ 𝐴 ⊆ 𝐵 | |
2 | ssexi.1 | . . 3 ⊢ 𝐵 ∈ V | |
3 | 2 | ssex 5240 | . 2 ⊢ (𝐴 ⊆ 𝐵 → 𝐴 ∈ V) |
4 | 1, 3 | ax-mp 5 | 1 ⊢ 𝐴 ∈ V |
Colors of variables: wff setvar class |
Syntax hints: ∈ wcel 2108 Vcvv 3422 ⊆ wss 3883 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-ext 2709 ax-sep 5218 |
This theorem depends on definitions: df-bi 206 df-an 396 df-tru 1542 df-ex 1784 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-rab 3072 df-v 3424 df-in 3890 df-ss 3900 |
This theorem is referenced by: zfausab 5249 ord3ex 5305 epse 5563 opabex 7078 mptexw 7769 fvclex 7775 oprabex 7792 mpoexw 7892 tfrlem16 8195 fosetex 8604 f1osetex 8605 dffi3 9120 r0weon 9699 dfac3 9808 dfac5lem4 9813 dfac2b 9817 hsmexlem6 10118 domtriomlem 10129 axdc3lem 10137 ac6 10167 brdom7disj 10218 brdom6disj 10219 niex 10568 enqex 10609 npex 10673 nrex1 10751 enrex 10754 reex 10893 nnex 11909 zex 12258 qex 12630 ixxex 13019 ltweuz 13609 seqexw 13665 prmex 16310 prdsval 17083 prdsle 17090 sectfval 17380 sscpwex 17444 issubc 17466 isfunc 17495 fullfunc 17538 fthfunc 17539 isfull 17542 isfth 17546 ipoval 18163 letsr 18226 nmznsg 18711 eqgfval 18719 isghm 18749 lpival 20429 xrsle 20530 znle 20652 cssval 20799 pjfval 20823 ltbval 21154 opsrle 21158 istopon 21969 dmtopon 21980 leordtval2 22271 lecldbas 22278 xkoopn 22648 xkouni 22658 xkoccn 22678 xkoco1cn 22716 xkoco2cn 22717 xkococn 22719 xkoinjcn 22746 uzrest 22956 ustfn 23261 ustn0 23280 isphtpc 24063 tcphex 24286 tchnmfval 24297 bcthlem1 24393 bcthlem5 24397 dyadmbl 24669 itg2seq 24812 aannenlem3 25395 psercn 25490 abelth 25505 vmadivsum 26535 rpvmasumlem 26540 mudivsum 26583 selberglem1 26598 selberglem2 26599 selberg2lem 26603 selberg2 26604 pntrsumo1 26618 selbergr 26621 iscgrg 26777 isismt 26799 ishlg 26867 ishpg 27024 iscgra 27074 isinag 27103 isleag 27112 pthsfval 27990 spthsfval 27991 crcts 28057 cycls 28058 eupths 28465 sspval 28986 ajfval 29072 shex 29475 chex 29489 hmopex 30138 ressplusf 31137 ressmulgnn 31194 inftmrel 31336 isinftm 31337 dmvlsiga 31997 measbase 32065 ismeas 32067 isrnmeas 32068 faeval 32114 eulerpartlemmf 32242 eulerpartlemgvv 32243 signsplypnf 32429 signsply0 32430 afsval 32551 kur14lem7 33074 kur14lem9 33076 satfvsuclem1 33221 fmlasuc0 33246 mppsval 33434 dfon2lem7 33671 colinearex 34289 poimirlem4 35708 heibor1lem 35894 rrnval 35912 lsatset 36931 lcvfbr 36961 cmtfvalN 37151 cvrfval 37209 lineset 37679 psubspset 37685 psubclsetN 37877 lautset 38023 pautsetN 38039 tendoset 38700 dicval 39117 eldiophb 40495 pellexlem3 40569 pellexlem5 40571 onfrALTlem3VD 42396 dmvolsal 43775 smfresal 44209 smfliminflem 44250 amgmlemALT 46393 |
Copyright terms: Public domain | W3C validator |