| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ssexi | Structured version Visualization version GIF version | ||
| Description: The subset of a set is also a set. (Contributed by NM, 9-Sep-1993.) |
| Ref | Expression |
|---|---|
| ssexi.1 | ⊢ 𝐵 ∈ V |
| ssexi.2 | ⊢ 𝐴 ⊆ 𝐵 |
| Ref | Expression |
|---|---|
| ssexi | ⊢ 𝐴 ∈ V |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ssexi.2 | . 2 ⊢ 𝐴 ⊆ 𝐵 | |
| 2 | ssexi.1 | . . 3 ⊢ 𝐵 ∈ V | |
| 3 | 2 | ssex 5271 | . 2 ⊢ (𝐴 ⊆ 𝐵 → 𝐴 ∈ V) |
| 4 | 1, 3 | ax-mp 5 | 1 ⊢ 𝐴 ∈ V |
| Colors of variables: wff setvar class |
| Syntax hints: ∈ wcel 2109 Vcvv 3444 ⊆ wss 3911 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 ax-sep 5246 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1088 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-rab 3403 df-v 3446 df-in 3918 df-ss 3928 |
| This theorem is referenced by: abex 5276 zfausab 5282 ord3ex 5337 epse 5613 opabex 7176 opabresex2 7423 mptexw 7911 fvclex 7917 oprabex 7934 mpoexw 8036 tfrlem16 8338 fosetex 8808 f1osetex 8809 dffi3 9358 r0weon 9943 dfac3 10052 dfac5lem4 10057 dfac5lem4OLD 10059 dfac2b 10062 hsmexlem6 10362 domtriomlem 10373 axdc3lem 10381 ac6 10411 brdom7disj 10462 brdom6disj 10463 niex 10812 enqex 10853 npex 10917 nrex1 10995 enrex 10998 reex 11137 nnex 12170 zex 12516 qex 12898 ixxex 13295 ltweuz 13904 seqexw 13960 cshwsexa 14766 prmex 16624 prdsval 17395 prdsle 17402 xrsle 17544 sectfval 17694 sscpwex 17758 issubc 17778 isfunc 17807 fullfunc 17851 fthfunc 17852 isfull 17855 isfth 17859 ipoval 18472 letsr 18535 ressmulgnn 18991 nmznsg 19083 eqgfval 19091 isghm 19130 isghmOLD 19131 lpival 21267 znle 21479 cssval 21625 pjfval 21649 ltbval 21984 opsrle 21988 istopon 22833 dmtopon 22844 leordtval2 23133 lecldbas 23140 xkoopn 23510 xkouni 23520 xkoccn 23540 xkoco1cn 23578 xkoco2cn 23579 xkococn 23581 xkoinjcn 23608 uzrest 23818 ustfn 24123 ustn0 24142 isphtpc 24927 tcphex 25151 tchnmfval 25162 bcthlem1 25258 bcthlem5 25262 dyadmbl 25535 itg2seq 25677 aannenlem3 26272 psercn 26370 abelth 26385 vmadivsum 27427 rpvmasumlem 27432 mudivsum 27475 selberglem1 27490 selberglem2 27491 selberg2lem 27495 selberg2 27496 pntrsumo1 27510 selbergr 27513 iscgrg 28493 isismt 28515 ishlg 28583 ishpg 28740 iscgra 28790 isinag 28819 isleag 28828 wksv 29601 sspval 30703 ajfval 30789 shex 31192 chex 31206 hmopex 31855 ressplusf 32936 inftmrel 33150 isinftm 33151 constrsuc 33722 dmvlsiga 34113 measbase 34181 ismeas 34183 isrnmeas 34184 faeval 34230 eulerpartlemmf 34360 eulerpartlemgvv 34361 signsplypnf 34535 signsply0 34536 afsval 34656 kur14lem7 35193 kur14lem9 35195 satfvsuclem1 35340 fmlasuc0 35365 mppsval 35553 dfon2lem7 35771 colinearex 36042 poimirlem4 37612 heibor1lem 37797 rrnval 37815 lsatset 38977 lcvfbr 39007 cmtfvalN 39197 cvrfval 39255 lineset 39726 psubspset 39732 psubclsetN 39924 lautset 40070 pautsetN 40086 tendoset 40747 dicval 41164 ltex 42227 leex 42228 sn-isghm 42655 eldiophb 42739 pellexlem3 42813 pellexlem5 42815 onfrALTlem3VD 44870 modelaxreplem1 44962 rpex 45336 dmvolsal 46338 smfresal 46780 smfliminflem 46822 upwordsseti 46877 sectfn 49012 amgmlemALT 49786 |
| Copyright terms: Public domain | W3C validator |