| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ssexi | Structured version Visualization version GIF version | ||
| Description: The subset of a set is also a set. (Contributed by NM, 9-Sep-1993.) |
| Ref | Expression |
|---|---|
| ssexi.1 | ⊢ 𝐵 ∈ V |
| ssexi.2 | ⊢ 𝐴 ⊆ 𝐵 |
| Ref | Expression |
|---|---|
| ssexi | ⊢ 𝐴 ∈ V |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ssexi.2 | . 2 ⊢ 𝐴 ⊆ 𝐵 | |
| 2 | ssexi.1 | . . 3 ⊢ 𝐵 ∈ V | |
| 3 | 2 | ssex 5260 | . 2 ⊢ (𝐴 ⊆ 𝐵 → 𝐴 ∈ V) |
| 4 | 1, 3 | ax-mp 5 | 1 ⊢ 𝐴 ∈ V |
| Colors of variables: wff setvar class |
| Syntax hints: ∈ wcel 2109 Vcvv 3436 ⊆ wss 3903 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 ax-sep 5235 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1088 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-rab 3395 df-v 3438 df-in 3910 df-ss 3920 |
| This theorem is referenced by: abex 5265 zfausab 5271 ord3ex 5326 epse 5601 opabex 7156 opabresex2 7403 mptexw 7888 fvclex 7894 oprabex 7911 mpoexw 8013 tfrlem16 8315 fosetex 8785 f1osetex 8786 dffi3 9321 r0weon 9906 dfac3 10015 dfac5lem4 10020 dfac5lem4OLD 10022 dfac2b 10025 hsmexlem6 10325 domtriomlem 10336 axdc3lem 10344 ac6 10374 brdom7disj 10425 brdom6disj 10426 niex 10775 enqex 10816 npex 10880 nrex1 10958 enrex 10961 reex 11100 nnex 12134 zex 12480 qex 12862 ixxex 13259 ltweuz 13868 seqexw 13924 cshwsexa 14730 prmex 16588 prdsval 17359 prdsle 17366 xrsle 17508 sectfval 17658 sscpwex 17722 issubc 17742 isfunc 17771 fullfunc 17815 fthfunc 17816 isfull 17819 isfth 17823 ipoval 18436 letsr 18499 ressmulgnn 18955 nmznsg 19047 eqgfval 19055 isghm 19094 isghmOLD 19095 lpival 21231 znle 21443 cssval 21589 pjfval 21613 ltbval 21948 opsrle 21952 istopon 22797 dmtopon 22808 leordtval2 23097 lecldbas 23104 xkoopn 23474 xkouni 23484 xkoccn 23504 xkoco1cn 23542 xkoco2cn 23543 xkococn 23545 xkoinjcn 23572 uzrest 23782 ustfn 24087 ustn0 24106 isphtpc 24891 tcphex 25115 tchnmfval 25126 bcthlem1 25222 bcthlem5 25226 dyadmbl 25499 itg2seq 25641 aannenlem3 26236 psercn 26334 abelth 26349 vmadivsum 27391 rpvmasumlem 27396 mudivsum 27439 selberglem1 27454 selberglem2 27455 selberg2lem 27459 selberg2 27460 pntrsumo1 27474 selbergr 27477 iscgrg 28461 isismt 28483 ishlg 28551 ishpg 28708 iscgra 28758 isinag 28787 isleag 28796 wksv 29569 sspval 30671 ajfval 30757 shex 31160 chex 31174 hmopex 31823 ressplusf 32914 inftmrel 33131 isinftm 33132 constrsuc 33721 dmvlsiga 34112 measbase 34180 ismeas 34182 isrnmeas 34183 faeval 34229 eulerpartlemmf 34359 eulerpartlemgvv 34360 signsplypnf 34534 signsply0 34535 afsval 34655 fineqvnttrclse 35093 kur14lem7 35205 kur14lem9 35207 satfvsuclem1 35352 fmlasuc0 35377 mppsval 35565 dfon2lem7 35783 colinearex 36054 poimirlem4 37624 heibor1lem 37809 rrnval 37827 lsatset 38989 lcvfbr 39019 cmtfvalN 39209 cvrfval 39267 lineset 39737 psubspset 39743 psubclsetN 39935 lautset 40081 pautsetN 40097 tendoset 40758 dicval 41175 ltex 42238 leex 42239 sn-isghm 42666 eldiophb 42750 pellexlem3 42824 pellexlem5 42826 onfrALTlem3VD 44880 modelaxreplem1 44972 rpex 45346 dmvolsal 46347 smfresal 46789 smfliminflem 46831 upwordsseti 46886 sectfn 49034 amgmlemALT 49808 |
| Copyright terms: Public domain | W3C validator |