| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ssexi | Structured version Visualization version GIF version | ||
| Description: The subset of a set is also a set. (Contributed by NM, 9-Sep-1993.) |
| Ref | Expression |
|---|---|
| ssexi.1 | ⊢ 𝐵 ∈ V |
| ssexi.2 | ⊢ 𝐴 ⊆ 𝐵 |
| Ref | Expression |
|---|---|
| ssexi | ⊢ 𝐴 ∈ V |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ssexi.2 | . 2 ⊢ 𝐴 ⊆ 𝐵 | |
| 2 | ssexi.1 | . . 3 ⊢ 𝐵 ∈ V | |
| 3 | 2 | ssex 5276 | . 2 ⊢ (𝐴 ⊆ 𝐵 → 𝐴 ∈ V) |
| 4 | 1, 3 | ax-mp 5 | 1 ⊢ 𝐴 ∈ V |
| Colors of variables: wff setvar class |
| Syntax hints: ∈ wcel 2109 Vcvv 3447 ⊆ wss 3914 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 ax-sep 5251 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1088 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-rab 3406 df-v 3449 df-in 3921 df-ss 3931 |
| This theorem is referenced by: abex 5281 zfausab 5287 ord3ex 5342 epse 5620 opabex 7194 opabresex2 7441 mptexw 7931 fvclex 7937 oprabex 7955 mpoexw 8057 tfrlem16 8361 fosetex 8831 f1osetex 8832 dffi3 9382 r0weon 9965 dfac3 10074 dfac5lem4 10079 dfac5lem4OLD 10081 dfac2b 10084 hsmexlem6 10384 domtriomlem 10395 axdc3lem 10403 ac6 10433 brdom7disj 10484 brdom6disj 10485 niex 10834 enqex 10875 npex 10939 nrex1 11017 enrex 11020 reex 11159 nnex 12192 zex 12538 qex 12920 ixxex 13317 ltweuz 13926 seqexw 13982 cshwsexa 14789 prmex 16647 prdsval 17418 prdsle 17425 sectfval 17713 sscpwex 17777 issubc 17797 isfunc 17826 fullfunc 17870 fthfunc 17871 isfull 17874 isfth 17878 ipoval 18489 letsr 18552 ressmulgnn 19008 nmznsg 19100 eqgfval 19108 isghm 19147 isghmOLD 19148 lpival 21234 xrsle 21299 znle 21446 cssval 21591 pjfval 21615 ltbval 21950 opsrle 21954 istopon 22799 dmtopon 22810 leordtval2 23099 lecldbas 23106 xkoopn 23476 xkouni 23486 xkoccn 23506 xkoco1cn 23544 xkoco2cn 23545 xkococn 23547 xkoinjcn 23574 uzrest 23784 ustfn 24089 ustn0 24108 isphtpc 24893 tcphex 25117 tchnmfval 25128 bcthlem1 25224 bcthlem5 25228 dyadmbl 25501 itg2seq 25643 aannenlem3 26238 psercn 26336 abelth 26351 vmadivsum 27393 rpvmasumlem 27398 mudivsum 27441 selberglem1 27456 selberglem2 27457 selberg2lem 27461 selberg2 27462 pntrsumo1 27476 selbergr 27479 iscgrg 28439 isismt 28461 ishlg 28529 ishpg 28686 iscgra 28736 isinag 28765 isleag 28774 wksv 29547 sspval 30652 ajfval 30738 shex 31141 chex 31155 hmopex 31804 ressplusf 32885 inftmrel 33134 isinftm 33135 constrsuc 33728 dmvlsiga 34119 measbase 34187 ismeas 34189 isrnmeas 34190 faeval 34236 eulerpartlemmf 34366 eulerpartlemgvv 34367 signsplypnf 34541 signsply0 34542 afsval 34662 kur14lem7 35199 kur14lem9 35201 satfvsuclem1 35346 fmlasuc0 35371 mppsval 35559 dfon2lem7 35777 colinearex 36048 poimirlem4 37618 heibor1lem 37803 rrnval 37821 lsatset 38983 lcvfbr 39013 cmtfvalN 39203 cvrfval 39261 lineset 39732 psubspset 39738 psubclsetN 39930 lautset 40076 pautsetN 40092 tendoset 40753 dicval 41170 ltex 42233 leex 42234 sn-isghm 42661 eldiophb 42745 pellexlem3 42819 pellexlem5 42821 onfrALTlem3VD 44876 modelaxreplem1 44968 rpex 45342 dmvolsal 46344 smfresal 46786 smfliminflem 46828 upwordsseti 46883 sectfn 49018 amgmlemALT 49792 |
| Copyright terms: Public domain | W3C validator |