| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ssexi | Structured version Visualization version GIF version | ||
| Description: The subset of a set is also a set. (Contributed by NM, 9-Sep-1993.) |
| Ref | Expression |
|---|---|
| ssexi.1 | ⊢ 𝐵 ∈ V |
| ssexi.2 | ⊢ 𝐴 ⊆ 𝐵 |
| Ref | Expression |
|---|---|
| ssexi | ⊢ 𝐴 ∈ V |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ssexi.2 | . 2 ⊢ 𝐴 ⊆ 𝐵 | |
| 2 | ssexi.1 | . . 3 ⊢ 𝐵 ∈ V | |
| 3 | 2 | ssex 5257 | . 2 ⊢ (𝐴 ⊆ 𝐵 → 𝐴 ∈ V) |
| 4 | 1, 3 | ax-mp 5 | 1 ⊢ 𝐴 ∈ V |
| Colors of variables: wff setvar class |
| Syntax hints: ∈ wcel 2111 Vcvv 3436 ⊆ wss 3897 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 ax-sep 5232 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1088 df-tru 1544 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-rab 3396 df-v 3438 df-in 3904 df-ss 3914 |
| This theorem is referenced by: abex 5262 zfausab 5268 ord3ex 5323 epse 5596 opabex 7154 opabresex2 7400 mptexw 7885 fvclex 7891 oprabex 7908 mpoexw 8010 tfrlem16 8312 fosetex 8782 f1osetex 8783 dffi3 9315 r0weon 9903 dfac3 10012 dfac5lem4 10017 dfac5lem4OLD 10019 dfac2b 10022 hsmexlem6 10322 domtriomlem 10333 axdc3lem 10341 ac6 10371 brdom7disj 10422 brdom6disj 10423 niex 10772 enqex 10813 npex 10877 nrex1 10955 enrex 10958 reex 11097 nnex 12131 zex 12477 qex 12859 ixxex 13256 ltweuz 13868 seqexw 13924 cshwsexa 14731 prmex 16588 prdsval 17359 prdsle 17366 xrsle 17508 sectfval 17658 sscpwex 17722 issubc 17742 isfunc 17771 fullfunc 17815 fthfunc 17816 isfull 17819 isfth 17823 ipoval 18436 letsr 18499 ressmulgnn 18989 nmznsg 19080 eqgfval 19088 isghm 19127 isghmOLD 19128 lpival 21261 znle 21473 cssval 21619 pjfval 21643 ltbval 21978 opsrle 21982 istopon 22827 dmtopon 22838 leordtval2 23127 lecldbas 23134 xkoopn 23504 xkouni 23514 xkoccn 23534 xkoco1cn 23572 xkoco2cn 23573 xkococn 23575 xkoinjcn 23602 uzrest 23812 ustfn 24117 ustn0 24136 isphtpc 24920 tcphex 25144 tchnmfval 25155 bcthlem1 25251 bcthlem5 25255 dyadmbl 25528 itg2seq 25670 aannenlem3 26265 psercn 26363 abelth 26378 vmadivsum 27420 rpvmasumlem 27425 mudivsum 27468 selberglem1 27483 selberglem2 27484 selberg2lem 27488 selberg2 27489 pntrsumo1 27503 selbergr 27506 iscgrg 28490 isismt 28512 ishlg 28580 ishpg 28737 iscgra 28787 isinag 28816 isleag 28825 wksv 29598 sspval 30703 ajfval 30789 shex 31192 chex 31206 hmopex 31855 ressplusf 32944 inftmrel 33149 isinftm 33150 esplymhp 33589 esplyfv1 33590 constrsuc 33751 dmvlsiga 34142 measbase 34210 ismeas 34212 isrnmeas 34213 faeval 34259 eulerpartlemmf 34388 eulerpartlemgvv 34389 signsplypnf 34563 signsply0 34564 afsval 34684 fineqvnttrclse 35144 kur14lem7 35256 kur14lem9 35258 satfvsuclem1 35403 fmlasuc0 35428 mppsval 35616 dfon2lem7 35831 colinearex 36104 poimirlem4 37663 heibor1lem 37848 rrnval 37866 lsatset 39088 lcvfbr 39118 cmtfvalN 39308 cvrfval 39366 lineset 39836 psubspset 39842 psubclsetN 40034 lautset 40180 pautsetN 40196 tendoset 40857 dicval 41274 ltex 42337 leex 42338 sn-isghm 42765 eldiophb 42849 pellexlem3 42923 pellexlem5 42925 onfrALTlem3VD 44978 modelaxreplem1 45070 rpex 45444 dmvolsal 46443 smfresal 46885 smfliminflem 46927 sectfn 49129 amgmlemALT 49903 |
| Copyright terms: Public domain | W3C validator |