![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ssexi | Structured version Visualization version GIF version |
Description: The subset of a set is also a set. (Contributed by NM, 9-Sep-1993.) |
Ref | Expression |
---|---|
ssexi.1 | ⊢ 𝐵 ∈ V |
ssexi.2 | ⊢ 𝐴 ⊆ 𝐵 |
Ref | Expression |
---|---|
ssexi | ⊢ 𝐴 ∈ V |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ssexi.2 | . 2 ⊢ 𝐴 ⊆ 𝐵 | |
2 | ssexi.1 | . . 3 ⊢ 𝐵 ∈ V | |
3 | 2 | ssex 5027 | . 2 ⊢ (𝐴 ⊆ 𝐵 → 𝐴 ∈ V) |
4 | 1, 3 | ax-mp 5 | 1 ⊢ 𝐴 ∈ V |
Colors of variables: wff setvar class |
Syntax hints: ∈ wcel 2166 Vcvv 3414 ⊆ wss 3798 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1896 ax-4 1910 ax-5 2011 ax-6 2077 ax-7 2114 ax-9 2175 ax-10 2194 ax-11 2209 ax-12 2222 ax-ext 2803 ax-sep 5005 |
This theorem depends on definitions: df-bi 199 df-an 387 df-or 881 df-tru 1662 df-ex 1881 df-nf 1885 df-sb 2070 df-clab 2812 df-cleq 2818 df-clel 2821 df-nfc 2958 df-v 3416 df-in 3805 df-ss 3812 |
This theorem is referenced by: zfausab 5035 ord3ex 5086 epse 5325 opabex 6739 fvclex 7400 oprabex 7416 tfrlem16 7755 oev 7861 sbthlem2 8340 phplem2 8409 php 8413 pssnn 8447 dffi3 8606 r0weon 9148 dfac3 9257 dfac5lem4 9262 dfac2b 9266 dfac2OLD 9268 hsmexlem6 9568 domtriomlem 9579 axdc3lem 9587 ac6 9617 brdom7disj 9668 brdom6disj 9669 konigthlem 9705 niex 10018 enqex 10059 npex 10123 nrex1 10201 enrex 10204 reex 10343 nnex 11357 zex 11713 qex 12083 ixxex 12474 ltweuz 13055 prmex 15763 1arithlem1 15998 1arith 16002 prdsval 16468 prdsle 16475 sectfval 16763 sscpwex 16827 issubc 16847 isfunc 16876 fullfunc 16918 fthfunc 16919 isfull 16922 isfth 16926 ipoval 17507 letsr 17580 nmznsg 17989 eqgfval 17993 isghm 18011 symgval 18149 ablfac1b 18823 lpival 19606 ltbval 19832 opsrle 19836 xrsle 20126 xrs10 20145 xrge0cmn 20148 znle 20244 cnmsgngrp 20284 psgninv 20287 cssval 20389 pjfval 20413 istopon 21087 dmtopon 21098 leordtval2 21387 lecldbas 21394 xkoopn 21763 xkouni 21773 xkoccn 21793 xkoco1cn 21831 xkoco2cn 21832 xkococn 21834 xkoinjcn 21861 uzrest 22071 ustfn 22375 ustn0 22394 imasdsf1olem 22548 qtopbaslem 22932 isphtpc 23163 tcphex 23385 tchnmfval 23396 bcthlem1 23492 bcthlem5 23496 dyadmbl 23766 itg2seq 23908 lhop1lem 24175 aannenlem3 24484 psercn 24579 abelth 24594 cxpcn2 24889 vmaval 25252 sqff1o 25321 musum 25330 vmadivsum 25584 rpvmasumlem 25589 mudivsum 25632 selberglem1 25647 selberglem2 25648 selberg2lem 25652 selberg2 25653 pntrsumo1 25667 selbergr 25670 iscgrg 25824 isismt 25846 ishlg 25914 ishpg 26068 iscgra 26118 isinag 26147 isleag 26151 pthsfval 27023 spthsfval 27024 crcts 27090 cycls 27091 eupths 27576 sspval 28133 ajfval 28219 shex 28624 chex 28638 hmopex 29289 ressplusf 30195 ressmulgnn 30228 inftmrel 30279 isinftm 30280 dmvlsiga 30737 measbase 30805 ismeas 30807 isrnmeas 30808 faeval 30854 eulerpartlemmf 30982 eulerpartlemgvv 30983 signsplypnf 31174 signsply0 31175 afsval 31298 kur14lem7 31740 kur14lem9 31742 mppsval 32015 dfon2lem7 32232 colinearex 32706 cnfinltrel 33786 poimirlem4 33957 heibor1lem 34150 rrnval 34168 lsatset 35065 lcvfbr 35095 cmtfvalN 35285 cvrfval 35343 lineset 35813 psubspset 35819 psubclsetN 36011 lautset 36157 pautsetN 36173 tendoset 36834 dicval 37251 eldiophb 38164 pellexlem3 38239 pellexlem5 38241 onfrALTlem3VD 39941 dmvolsal 41355 smfresal 41789 smfliminflem 41830 amgmlemALT 43445 |
Copyright terms: Public domain | W3C validator |