| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ssexi | Structured version Visualization version GIF version | ||
| Description: The subset of a set is also a set. (Contributed by NM, 9-Sep-1993.) |
| Ref | Expression |
|---|---|
| ssexi.1 | ⊢ 𝐵 ∈ V |
| ssexi.2 | ⊢ 𝐴 ⊆ 𝐵 |
| Ref | Expression |
|---|---|
| ssexi | ⊢ 𝐴 ∈ V |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ssexi.2 | . 2 ⊢ 𝐴 ⊆ 𝐵 | |
| 2 | ssexi.1 | . . 3 ⊢ 𝐵 ∈ V | |
| 3 | 2 | ssex 5279 | . 2 ⊢ (𝐴 ⊆ 𝐵 → 𝐴 ∈ V) |
| 4 | 1, 3 | ax-mp 5 | 1 ⊢ 𝐴 ∈ V |
| Colors of variables: wff setvar class |
| Syntax hints: ∈ wcel 2109 Vcvv 3450 ⊆ wss 3917 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2702 ax-sep 5254 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1088 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2709 df-cleq 2722 df-clel 2804 df-rab 3409 df-v 3452 df-in 3924 df-ss 3934 |
| This theorem is referenced by: abex 5284 zfausab 5290 ord3ex 5345 epse 5623 opabex 7197 opabresex2 7444 mptexw 7934 fvclex 7940 oprabex 7958 mpoexw 8060 tfrlem16 8364 fosetex 8834 f1osetex 8835 dffi3 9389 r0weon 9972 dfac3 10081 dfac5lem4 10086 dfac5lem4OLD 10088 dfac2b 10091 hsmexlem6 10391 domtriomlem 10402 axdc3lem 10410 ac6 10440 brdom7disj 10491 brdom6disj 10492 niex 10841 enqex 10882 npex 10946 nrex1 11024 enrex 11027 reex 11166 nnex 12199 zex 12545 qex 12927 ixxex 13324 ltweuz 13933 seqexw 13989 cshwsexa 14796 prmex 16654 prdsval 17425 prdsle 17432 sectfval 17720 sscpwex 17784 issubc 17804 isfunc 17833 fullfunc 17877 fthfunc 17878 isfull 17881 isfth 17885 ipoval 18496 letsr 18559 ressmulgnn 19015 nmznsg 19107 eqgfval 19115 isghm 19154 isghmOLD 19155 lpival 21241 xrsle 21306 znle 21453 cssval 21598 pjfval 21622 ltbval 21957 opsrle 21961 istopon 22806 dmtopon 22817 leordtval2 23106 lecldbas 23113 xkoopn 23483 xkouni 23493 xkoccn 23513 xkoco1cn 23551 xkoco2cn 23552 xkococn 23554 xkoinjcn 23581 uzrest 23791 ustfn 24096 ustn0 24115 isphtpc 24900 tcphex 25124 tchnmfval 25135 bcthlem1 25231 bcthlem5 25235 dyadmbl 25508 itg2seq 25650 aannenlem3 26245 psercn 26343 abelth 26358 vmadivsum 27400 rpvmasumlem 27405 mudivsum 27448 selberglem1 27463 selberglem2 27464 selberg2lem 27468 selberg2 27469 pntrsumo1 27483 selbergr 27486 iscgrg 28446 isismt 28468 ishlg 28536 ishpg 28693 iscgra 28743 isinag 28772 isleag 28781 wksv 29554 sspval 30659 ajfval 30745 shex 31148 chex 31162 hmopex 31811 ressplusf 32892 inftmrel 33141 isinftm 33142 constrsuc 33735 dmvlsiga 34126 measbase 34194 ismeas 34196 isrnmeas 34197 faeval 34243 eulerpartlemmf 34373 eulerpartlemgvv 34374 signsplypnf 34548 signsply0 34549 afsval 34669 kur14lem7 35206 kur14lem9 35208 satfvsuclem1 35353 fmlasuc0 35378 mppsval 35566 dfon2lem7 35784 colinearex 36055 poimirlem4 37625 heibor1lem 37810 rrnval 37828 lsatset 38990 lcvfbr 39020 cmtfvalN 39210 cvrfval 39268 lineset 39739 psubspset 39745 psubclsetN 39937 lautset 40083 pautsetN 40099 tendoset 40760 dicval 41177 ltex 42240 leex 42241 sn-isghm 42668 eldiophb 42752 pellexlem3 42826 pellexlem5 42828 onfrALTlem3VD 44883 modelaxreplem1 44975 rpex 45349 dmvolsal 46351 smfresal 46793 smfliminflem 46835 upwordsseti 46890 sectfn 49022 amgmlemALT 49796 |
| Copyright terms: Public domain | W3C validator |