Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  rabfmpunirn Structured version   Visualization version   GIF version

Theorem rabfmpunirn 30392
Description: Membership in a union of a mapping function-defined family of sets. (Contributed by Thierry Arnoux, 30-Sep-2016.)
Hypotheses
Ref Expression
rabfmpunirn.1 𝐹 = (𝑥𝑉 ↦ {𝑦𝑊𝜑})
rabfmpunirn.2 𝑊 ∈ V
rabfmpunirn.3 (𝑦 = 𝐵 → (𝜑𝜓))
Assertion
Ref Expression
rabfmpunirn (𝐵 ran 𝐹 ↔ ∃𝑥𝑉 (𝐵𝑊𝜓))
Distinct variable groups:   𝑥,𝑦,𝐵   𝑥,𝐹,𝑦   𝑥,𝑉,𝑦   𝑦,𝑊   𝜓,𝑦
Allowed substitution hints:   𝜑(𝑥,𝑦)   𝜓(𝑥)   𝑊(𝑥)

Proof of Theorem rabfmpunirn
StepHypRef Expression
1 rabfmpunirn.1 . . . 4 𝐹 = (𝑥𝑉 ↦ {𝑦𝑊𝜑})
2 df-rab 3147 . . . . 5 {𝑦𝑊𝜑} = {𝑦 ∣ (𝑦𝑊𝜑)}
32mpteq2i 5150 . . . 4 (𝑥𝑉 ↦ {𝑦𝑊𝜑}) = (𝑥𝑉 ↦ {𝑦 ∣ (𝑦𝑊𝜑)})
41, 3eqtri 2844 . . 3 𝐹 = (𝑥𝑉 ↦ {𝑦 ∣ (𝑦𝑊𝜑)})
5 rabfmpunirn.2 . . . 4 𝑊 ∈ V
65zfausab 5225 . . 3 {𝑦 ∣ (𝑦𝑊𝜑)} ∈ V
7 eleq1 2900 . . . 4 (𝑦 = 𝐵 → (𝑦𝑊𝐵𝑊))
8 rabfmpunirn.3 . . . 4 (𝑦 = 𝐵 → (𝜑𝜓))
97, 8anbi12d 632 . . 3 (𝑦 = 𝐵 → ((𝑦𝑊𝜑) ↔ (𝐵𝑊𝜓)))
104, 6, 9abfmpunirn 30391 . 2 (𝐵 ran 𝐹 ↔ (𝐵 ∈ V ∧ ∃𝑥𝑉 (𝐵𝑊𝜓)))
11 elex 3512 . . . . 5 (𝐵𝑊𝐵 ∈ V)
1211adantr 483 . . . 4 ((𝐵𝑊𝜓) → 𝐵 ∈ V)
1312rexlimivw 3282 . . 3 (∃𝑥𝑉 (𝐵𝑊𝜓) → 𝐵 ∈ V)
1413pm4.71ri 563 . 2 (∃𝑥𝑉 (𝐵𝑊𝜓) ↔ (𝐵 ∈ V ∧ ∃𝑥𝑉 (𝐵𝑊𝜓)))
1510, 14bitr4i 280 1 (𝐵 ran 𝐹 ↔ ∃𝑥𝑉 (𝐵𝑊𝜓))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398   = wceq 1533  wcel 2110  {cab 2799  wrex 3139  {crab 3142  Vcvv 3494   cuni 4831  cmpt 5138  ran crn 5550
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1907  ax-6 1966  ax-7 2011  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2157  ax-12 2173  ax-ext 2793  ax-sep 5195  ax-nul 5202  ax-pow 5258  ax-pr 5321
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3an 1085  df-tru 1536  df-ex 1777  df-nf 1781  df-sb 2066  df-mo 2618  df-eu 2650  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ral 3143  df-rex 3144  df-rab 3147  df-v 3496  df-sbc 3772  df-csb 3883  df-dif 3938  df-un 3940  df-in 3942  df-ss 3951  df-nul 4291  df-if 4467  df-sn 4561  df-pr 4563  df-op 4567  df-uni 4832  df-br 5059  df-opab 5121  df-mpt 5139  df-id 5454  df-xp 5555  df-rel 5556  df-cnv 5557  df-co 5558  df-dm 5559  df-rn 5560  df-res 5561  df-ima 5562  df-iota 6308  df-fun 6351  df-fn 6352  df-fv 6357
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator