| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > rabfmpunirn | Structured version Visualization version GIF version | ||
| Description: Membership in a union of a mapping function-defined family of sets. (Contributed by Thierry Arnoux, 30-Sep-2016.) |
| Ref | Expression |
|---|---|
| rabfmpunirn.1 | ⊢ 𝐹 = (𝑥 ∈ 𝑉 ↦ {𝑦 ∈ 𝑊 ∣ 𝜑}) |
| rabfmpunirn.2 | ⊢ 𝑊 ∈ V |
| rabfmpunirn.3 | ⊢ (𝑦 = 𝐵 → (𝜑 ↔ 𝜓)) |
| Ref | Expression |
|---|---|
| rabfmpunirn | ⊢ (𝐵 ∈ ∪ ran 𝐹 ↔ ∃𝑥 ∈ 𝑉 (𝐵 ∈ 𝑊 ∧ 𝜓)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rabfmpunirn.1 | . . . 4 ⊢ 𝐹 = (𝑥 ∈ 𝑉 ↦ {𝑦 ∈ 𝑊 ∣ 𝜑}) | |
| 2 | df-rab 3421 | . . . . 5 ⊢ {𝑦 ∈ 𝑊 ∣ 𝜑} = {𝑦 ∣ (𝑦 ∈ 𝑊 ∧ 𝜑)} | |
| 3 | 2 | mpteq2i 5222 | . . . 4 ⊢ (𝑥 ∈ 𝑉 ↦ {𝑦 ∈ 𝑊 ∣ 𝜑}) = (𝑥 ∈ 𝑉 ↦ {𝑦 ∣ (𝑦 ∈ 𝑊 ∧ 𝜑)}) |
| 4 | 1, 3 | eqtri 2759 | . . 3 ⊢ 𝐹 = (𝑥 ∈ 𝑉 ↦ {𝑦 ∣ (𝑦 ∈ 𝑊 ∧ 𝜑)}) |
| 5 | rabfmpunirn.2 | . . . 4 ⊢ 𝑊 ∈ V | |
| 6 | 5 | zfausab 5307 | . . 3 ⊢ {𝑦 ∣ (𝑦 ∈ 𝑊 ∧ 𝜑)} ∈ V |
| 7 | eleq1 2823 | . . . 4 ⊢ (𝑦 = 𝐵 → (𝑦 ∈ 𝑊 ↔ 𝐵 ∈ 𝑊)) | |
| 8 | rabfmpunirn.3 | . . . 4 ⊢ (𝑦 = 𝐵 → (𝜑 ↔ 𝜓)) | |
| 9 | 7, 8 | anbi12d 632 | . . 3 ⊢ (𝑦 = 𝐵 → ((𝑦 ∈ 𝑊 ∧ 𝜑) ↔ (𝐵 ∈ 𝑊 ∧ 𝜓))) |
| 10 | 4, 6, 9 | abfmpunirn 32635 | . 2 ⊢ (𝐵 ∈ ∪ ran 𝐹 ↔ (𝐵 ∈ V ∧ ∃𝑥 ∈ 𝑉 (𝐵 ∈ 𝑊 ∧ 𝜓))) |
| 11 | elex 3485 | . . . . 5 ⊢ (𝐵 ∈ 𝑊 → 𝐵 ∈ V) | |
| 12 | 11 | adantr 480 | . . . 4 ⊢ ((𝐵 ∈ 𝑊 ∧ 𝜓) → 𝐵 ∈ V) |
| 13 | 12 | rexlimivw 3138 | . . 3 ⊢ (∃𝑥 ∈ 𝑉 (𝐵 ∈ 𝑊 ∧ 𝜓) → 𝐵 ∈ V) |
| 14 | 13 | pm4.71ri 560 | . 2 ⊢ (∃𝑥 ∈ 𝑉 (𝐵 ∈ 𝑊 ∧ 𝜓) ↔ (𝐵 ∈ V ∧ ∃𝑥 ∈ 𝑉 (𝐵 ∈ 𝑊 ∧ 𝜓))) |
| 15 | 10, 14 | bitr4i 278 | 1 ⊢ (𝐵 ∈ ∪ ran 𝐹 ↔ ∃𝑥 ∈ 𝑉 (𝐵 ∈ 𝑊 ∧ 𝜓)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2109 {cab 2714 ∃wrex 3061 {crab 3420 Vcvv 3464 ∪ cuni 4888 ↦ cmpt 5206 ran crn 5660 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2708 ax-sep 5271 ax-nul 5281 ax-pr 5407 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2728 df-clel 2810 df-nfc 2886 df-ne 2934 df-ral 3053 df-rex 3062 df-rab 3421 df-v 3466 df-sbc 3771 df-csb 3880 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-nul 4314 df-if 4506 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4889 df-br 5125 df-opab 5187 df-mpt 5207 df-id 5553 df-xp 5665 df-rel 5666 df-cnv 5667 df-co 5668 df-dm 5669 df-rn 5670 df-res 5671 df-ima 5672 df-iota 6489 df-fun 6538 df-fn 6539 df-fv 6544 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |