Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > rabfmpunirn | Structured version Visualization version GIF version |
Description: Membership in a union of a mapping function-defined family of sets. (Contributed by Thierry Arnoux, 30-Sep-2016.) |
Ref | Expression |
---|---|
rabfmpunirn.1 | ⊢ 𝐹 = (𝑥 ∈ 𝑉 ↦ {𝑦 ∈ 𝑊 ∣ 𝜑}) |
rabfmpunirn.2 | ⊢ 𝑊 ∈ V |
rabfmpunirn.3 | ⊢ (𝑦 = 𝐵 → (𝜑 ↔ 𝜓)) |
Ref | Expression |
---|---|
rabfmpunirn | ⊢ (𝐵 ∈ ∪ ran 𝐹 ↔ ∃𝑥 ∈ 𝑉 (𝐵 ∈ 𝑊 ∧ 𝜓)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rabfmpunirn.1 | . . . 4 ⊢ 𝐹 = (𝑥 ∈ 𝑉 ↦ {𝑦 ∈ 𝑊 ∣ 𝜑}) | |
2 | df-rab 3073 | . . . . 5 ⊢ {𝑦 ∈ 𝑊 ∣ 𝜑} = {𝑦 ∣ (𝑦 ∈ 𝑊 ∧ 𝜑)} | |
3 | 2 | mpteq2i 5179 | . . . 4 ⊢ (𝑥 ∈ 𝑉 ↦ {𝑦 ∈ 𝑊 ∣ 𝜑}) = (𝑥 ∈ 𝑉 ↦ {𝑦 ∣ (𝑦 ∈ 𝑊 ∧ 𝜑)}) |
4 | 1, 3 | eqtri 2766 | . . 3 ⊢ 𝐹 = (𝑥 ∈ 𝑉 ↦ {𝑦 ∣ (𝑦 ∈ 𝑊 ∧ 𝜑)}) |
5 | rabfmpunirn.2 | . . . 4 ⊢ 𝑊 ∈ V | |
6 | 5 | zfausab 5254 | . . 3 ⊢ {𝑦 ∣ (𝑦 ∈ 𝑊 ∧ 𝜑)} ∈ V |
7 | eleq1 2826 | . . . 4 ⊢ (𝑦 = 𝐵 → (𝑦 ∈ 𝑊 ↔ 𝐵 ∈ 𝑊)) | |
8 | rabfmpunirn.3 | . . . 4 ⊢ (𝑦 = 𝐵 → (𝜑 ↔ 𝜓)) | |
9 | 7, 8 | anbi12d 631 | . . 3 ⊢ (𝑦 = 𝐵 → ((𝑦 ∈ 𝑊 ∧ 𝜑) ↔ (𝐵 ∈ 𝑊 ∧ 𝜓))) |
10 | 4, 6, 9 | abfmpunirn 30989 | . 2 ⊢ (𝐵 ∈ ∪ ran 𝐹 ↔ (𝐵 ∈ V ∧ ∃𝑥 ∈ 𝑉 (𝐵 ∈ 𝑊 ∧ 𝜓))) |
11 | elex 3450 | . . . . 5 ⊢ (𝐵 ∈ 𝑊 → 𝐵 ∈ V) | |
12 | 11 | adantr 481 | . . . 4 ⊢ ((𝐵 ∈ 𝑊 ∧ 𝜓) → 𝐵 ∈ V) |
13 | 12 | rexlimivw 3211 | . . 3 ⊢ (∃𝑥 ∈ 𝑉 (𝐵 ∈ 𝑊 ∧ 𝜓) → 𝐵 ∈ V) |
14 | 13 | pm4.71ri 561 | . 2 ⊢ (∃𝑥 ∈ 𝑉 (𝐵 ∈ 𝑊 ∧ 𝜓) ↔ (𝐵 ∈ V ∧ ∃𝑥 ∈ 𝑉 (𝐵 ∈ 𝑊 ∧ 𝜓))) |
15 | 10, 14 | bitr4i 277 | 1 ⊢ (𝐵 ∈ ∪ ran 𝐹 ↔ ∃𝑥 ∈ 𝑉 (𝐵 ∈ 𝑊 ∧ 𝜓)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 396 = wceq 1539 ∈ wcel 2106 {cab 2715 ∃wrex 3065 {crab 3068 Vcvv 3432 ∪ cuni 4839 ↦ cmpt 5157 ran crn 5590 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-sep 5223 ax-nul 5230 ax-pr 5352 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ral 3069 df-rex 3070 df-rab 3073 df-v 3434 df-sbc 3717 df-csb 3833 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4257 df-if 4460 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-br 5075 df-opab 5137 df-mpt 5158 df-id 5489 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-iota 6391 df-fun 6435 df-fn 6436 df-fv 6441 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |