Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  rabfmpunirn Structured version   Visualization version   GIF version

Theorem rabfmpunirn 32577
Description: Membership in a union of a mapping function-defined family of sets. (Contributed by Thierry Arnoux, 30-Sep-2016.)
Hypotheses
Ref Expression
rabfmpunirn.1 𝐹 = (𝑥𝑉 ↦ {𝑦𝑊𝜑})
rabfmpunirn.2 𝑊 ∈ V
rabfmpunirn.3 (𝑦 = 𝐵 → (𝜑𝜓))
Assertion
Ref Expression
rabfmpunirn (𝐵 ran 𝐹 ↔ ∃𝑥𝑉 (𝐵𝑊𝜓))
Distinct variable groups:   𝑥,𝑦,𝐵   𝑥,𝐹,𝑦   𝑥,𝑉,𝑦   𝑦,𝑊   𝜓,𝑦
Allowed substitution hints:   𝜑(𝑥,𝑦)   𝜓(𝑥)   𝑊(𝑥)

Proof of Theorem rabfmpunirn
StepHypRef Expression
1 rabfmpunirn.1 . . . 4 𝐹 = (𝑥𝑉 ↦ {𝑦𝑊𝜑})
2 df-rab 3406 . . . . 5 {𝑦𝑊𝜑} = {𝑦 ∣ (𝑦𝑊𝜑)}
32mpteq2i 5203 . . . 4 (𝑥𝑉 ↦ {𝑦𝑊𝜑}) = (𝑥𝑉 ↦ {𝑦 ∣ (𝑦𝑊𝜑)})
41, 3eqtri 2752 . . 3 𝐹 = (𝑥𝑉 ↦ {𝑦 ∣ (𝑦𝑊𝜑)})
5 rabfmpunirn.2 . . . 4 𝑊 ∈ V
65zfausab 5287 . . 3 {𝑦 ∣ (𝑦𝑊𝜑)} ∈ V
7 eleq1 2816 . . . 4 (𝑦 = 𝐵 → (𝑦𝑊𝐵𝑊))
8 rabfmpunirn.3 . . . 4 (𝑦 = 𝐵 → (𝜑𝜓))
97, 8anbi12d 632 . . 3 (𝑦 = 𝐵 → ((𝑦𝑊𝜑) ↔ (𝐵𝑊𝜓)))
104, 6, 9abfmpunirn 32576 . 2 (𝐵 ran 𝐹 ↔ (𝐵 ∈ V ∧ ∃𝑥𝑉 (𝐵𝑊𝜓)))
11 elex 3468 . . . . 5 (𝐵𝑊𝐵 ∈ V)
1211adantr 480 . . . 4 ((𝐵𝑊𝜓) → 𝐵 ∈ V)
1312rexlimivw 3130 . . 3 (∃𝑥𝑉 (𝐵𝑊𝜓) → 𝐵 ∈ V)
1413pm4.71ri 560 . 2 (∃𝑥𝑉 (𝐵𝑊𝜓) ↔ (𝐵 ∈ V ∧ ∃𝑥𝑉 (𝐵𝑊𝜓)))
1510, 14bitr4i 278 1 (𝐵 ran 𝐹 ↔ ∃𝑥𝑉 (𝐵𝑊𝜓))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  {cab 2707  wrex 3053  {crab 3405  Vcvv 3447   cuni 4871  cmpt 5188  ran crn 5639
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5251  ax-nul 5261  ax-pr 5387
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-nul 4297  df-if 4489  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-br 5108  df-opab 5170  df-mpt 5189  df-id 5533  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-iota 6464  df-fun 6513  df-fn 6514  df-fv 6519
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator