Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  rabfmpunirn Structured version   Visualization version   GIF version

Theorem rabfmpunirn 32646
Description: Membership in a union of a mapping function-defined family of sets. (Contributed by Thierry Arnoux, 30-Sep-2016.)
Hypotheses
Ref Expression
rabfmpunirn.1 𝐹 = (𝑥𝑉 ↦ {𝑦𝑊𝜑})
rabfmpunirn.2 𝑊 ∈ V
rabfmpunirn.3 (𝑦 = 𝐵 → (𝜑𝜓))
Assertion
Ref Expression
rabfmpunirn (𝐵 ran 𝐹 ↔ ∃𝑥𝑉 (𝐵𝑊𝜓))
Distinct variable groups:   𝑥,𝑦,𝐵   𝑥,𝐹,𝑦   𝑥,𝑉,𝑦   𝑦,𝑊   𝜓,𝑦
Allowed substitution hints:   𝜑(𝑥,𝑦)   𝜓(𝑥)   𝑊(𝑥)

Proof of Theorem rabfmpunirn
StepHypRef Expression
1 rabfmpunirn.1 . . . 4 𝐹 = (𝑥𝑉 ↦ {𝑦𝑊𝜑})
2 df-rab 3398 . . . . 5 {𝑦𝑊𝜑} = {𝑦 ∣ (𝑦𝑊𝜑)}
32mpteq2i 5191 . . . 4 (𝑥𝑉 ↦ {𝑦𝑊𝜑}) = (𝑥𝑉 ↦ {𝑦 ∣ (𝑦𝑊𝜑)})
41, 3eqtri 2756 . . 3 𝐹 = (𝑥𝑉 ↦ {𝑦 ∣ (𝑦𝑊𝜑)})
5 rabfmpunirn.2 . . . 4 𝑊 ∈ V
65zfausab 5274 . . 3 {𝑦 ∣ (𝑦𝑊𝜑)} ∈ V
7 eleq1 2821 . . . 4 (𝑦 = 𝐵 → (𝑦𝑊𝐵𝑊))
8 rabfmpunirn.3 . . . 4 (𝑦 = 𝐵 → (𝜑𝜓))
97, 8anbi12d 632 . . 3 (𝑦 = 𝐵 → ((𝑦𝑊𝜑) ↔ (𝐵𝑊𝜓)))
104, 6, 9abfmpunirn 32645 . 2 (𝐵 ran 𝐹 ↔ (𝐵 ∈ V ∧ ∃𝑥𝑉 (𝐵𝑊𝜓)))
11 elex 3459 . . . . 5 (𝐵𝑊𝐵 ∈ V)
1211adantr 480 . . . 4 ((𝐵𝑊𝜓) → 𝐵 ∈ V)
1312rexlimivw 3131 . . 3 (∃𝑥𝑉 (𝐵𝑊𝜓) → 𝐵 ∈ V)
1413pm4.71ri 560 . 2 (∃𝑥𝑉 (𝐵𝑊𝜓) ↔ (𝐵 ∈ V ∧ ∃𝑥𝑉 (𝐵𝑊𝜓)))
1510, 14bitr4i 278 1 (𝐵 ran 𝐹 ↔ ∃𝑥𝑉 (𝐵𝑊𝜓))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1541  wcel 2113  {cab 2711  wrex 3058  {crab 3397  Vcvv 3438   cuni 4860  cmpt 5176  ran crn 5622
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-sep 5238  ax-nul 5248  ax-pr 5374
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2883  df-ne 2931  df-ral 3050  df-rex 3059  df-rab 3398  df-v 3440  df-sbc 3739  df-csb 3848  df-dif 3902  df-un 3904  df-in 3906  df-ss 3916  df-nul 4285  df-if 4477  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4861  df-br 5096  df-opab 5158  df-mpt 5177  df-id 5516  df-xp 5627  df-rel 5628  df-cnv 5629  df-co 5630  df-dm 5631  df-rn 5632  df-res 5633  df-ima 5634  df-iota 6445  df-fun 6491  df-fn 6492  df-fv 6497
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator