| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > rabfmpunirn | Structured version Visualization version GIF version | ||
| Description: Membership in a union of a mapping function-defined family of sets. (Contributed by Thierry Arnoux, 30-Sep-2016.) |
| Ref | Expression |
|---|---|
| rabfmpunirn.1 | ⊢ 𝐹 = (𝑥 ∈ 𝑉 ↦ {𝑦 ∈ 𝑊 ∣ 𝜑}) |
| rabfmpunirn.2 | ⊢ 𝑊 ∈ V |
| rabfmpunirn.3 | ⊢ (𝑦 = 𝐵 → (𝜑 ↔ 𝜓)) |
| Ref | Expression |
|---|---|
| rabfmpunirn | ⊢ (𝐵 ∈ ∪ ran 𝐹 ↔ ∃𝑥 ∈ 𝑉 (𝐵 ∈ 𝑊 ∧ 𝜓)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rabfmpunirn.1 | . . . 4 ⊢ 𝐹 = (𝑥 ∈ 𝑉 ↦ {𝑦 ∈ 𝑊 ∣ 𝜑}) | |
| 2 | df-rab 3394 | . . . . 5 ⊢ {𝑦 ∈ 𝑊 ∣ 𝜑} = {𝑦 ∣ (𝑦 ∈ 𝑊 ∧ 𝜑)} | |
| 3 | 2 | mpteq2i 5185 | . . . 4 ⊢ (𝑥 ∈ 𝑉 ↦ {𝑦 ∈ 𝑊 ∣ 𝜑}) = (𝑥 ∈ 𝑉 ↦ {𝑦 ∣ (𝑦 ∈ 𝑊 ∧ 𝜑)}) |
| 4 | 1, 3 | eqtri 2753 | . . 3 ⊢ 𝐹 = (𝑥 ∈ 𝑉 ↦ {𝑦 ∣ (𝑦 ∈ 𝑊 ∧ 𝜑)}) |
| 5 | rabfmpunirn.2 | . . . 4 ⊢ 𝑊 ∈ V | |
| 6 | 5 | zfausab 5268 | . . 3 ⊢ {𝑦 ∣ (𝑦 ∈ 𝑊 ∧ 𝜑)} ∈ V |
| 7 | eleq1 2817 | . . . 4 ⊢ (𝑦 = 𝐵 → (𝑦 ∈ 𝑊 ↔ 𝐵 ∈ 𝑊)) | |
| 8 | rabfmpunirn.3 | . . . 4 ⊢ (𝑦 = 𝐵 → (𝜑 ↔ 𝜓)) | |
| 9 | 7, 8 | anbi12d 632 | . . 3 ⊢ (𝑦 = 𝐵 → ((𝑦 ∈ 𝑊 ∧ 𝜑) ↔ (𝐵 ∈ 𝑊 ∧ 𝜓))) |
| 10 | 4, 6, 9 | abfmpunirn 32624 | . 2 ⊢ (𝐵 ∈ ∪ ran 𝐹 ↔ (𝐵 ∈ V ∧ ∃𝑥 ∈ 𝑉 (𝐵 ∈ 𝑊 ∧ 𝜓))) |
| 11 | elex 3455 | . . . . 5 ⊢ (𝐵 ∈ 𝑊 → 𝐵 ∈ V) | |
| 12 | 11 | adantr 480 | . . . 4 ⊢ ((𝐵 ∈ 𝑊 ∧ 𝜓) → 𝐵 ∈ V) |
| 13 | 12 | rexlimivw 3127 | . . 3 ⊢ (∃𝑥 ∈ 𝑉 (𝐵 ∈ 𝑊 ∧ 𝜓) → 𝐵 ∈ V) |
| 14 | 13 | pm4.71ri 560 | . 2 ⊢ (∃𝑥 ∈ 𝑉 (𝐵 ∈ 𝑊 ∧ 𝜓) ↔ (𝐵 ∈ V ∧ ∃𝑥 ∈ 𝑉 (𝐵 ∈ 𝑊 ∧ 𝜓))) |
| 15 | 10, 14 | bitr4i 278 | 1 ⊢ (𝐵 ∈ ∪ ran 𝐹 ↔ ∃𝑥 ∈ 𝑉 (𝐵 ∈ 𝑊 ∧ 𝜓)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1541 ∈ wcel 2110 {cab 2708 ∃wrex 3054 {crab 3393 Vcvv 3434 ∪ cuni 4857 ↦ cmpt 5170 ran crn 5615 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2112 ax-9 2120 ax-10 2143 ax-11 2159 ax-12 2179 ax-ext 2702 ax-sep 5232 ax-nul 5242 ax-pr 5368 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-ral 3046 df-rex 3055 df-rab 3394 df-v 3436 df-sbc 3740 df-csb 3849 df-dif 3903 df-un 3905 df-in 3907 df-ss 3917 df-nul 4282 df-if 4474 df-sn 4575 df-pr 4577 df-op 4581 df-uni 4858 df-br 5090 df-opab 5152 df-mpt 5171 df-id 5509 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-iota 6433 df-fun 6479 df-fn 6480 df-fv 6485 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |