| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > difexd | Structured version Visualization version GIF version | ||
| Description: Existence of a difference. (Contributed by SN, 16-Jul-2024.) |
| Ref | Expression |
|---|---|
| difexd.1 | ⊢ (𝜑 → 𝐴 ∈ 𝑉) |
| Ref | Expression |
|---|---|
| difexd | ⊢ (𝜑 → (𝐴 ∖ 𝐵) ∈ V) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | difexd.1 | . 2 ⊢ (𝜑 → 𝐴 ∈ 𝑉) | |
| 2 | difexg 5287 | . 2 ⊢ (𝐴 ∈ 𝑉 → (𝐴 ∖ 𝐵) ∈ V) | |
| 3 | 1, 2 | syl 17 | 1 ⊢ (𝜑 → (𝐴 ∖ 𝐵) ∈ V) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2109 Vcvv 3450 ∖ cdif 3914 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2702 ax-sep 5254 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1088 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2709 df-cleq 2722 df-clel 2804 df-rab 3409 df-v 3452 df-dif 3920 df-in 3924 df-ss 3934 |
| This theorem is referenced by: sexp2 8128 sexp3 8135 ralxpmap 8872 domdifsn 9028 domunsncan 9046 mapdom2 9118 acni 10005 infdif 10168 infpss 10176 enfin1ai 10344 fpwwe2 10603 canthp1lem1 10612 hashf1lem1 14427 mrieqv2d 17607 mreexexlemd 17612 dpjidcl 19997 pnrmopn 23237 cmpfi 23302 csdfil 23788 ufileu 23813 filufint 23814 alexsublem 23938 bcth3 25238 iunmbl 25461 tdeglem4 25972 fdifsupp 32615 gsummptres2 33000 tocycfv 33073 cyc3conja 33121 rprmdvdsprod 33512 esummono 34051 esumpad 34052 esumpad2 34053 insiga 34134 selvcllemh 42575 selvcllem4 42576 selvcllem5 42577 selvcl 42578 selvval2 42579 selvvvval 42580 selvadd 42583 selvmul 42584 fsuppssind 42588 tfsconcatun 43333 oaun2 43377 oaun3 43378 clcnvlem 43619 dssmapfv3d 44015 dssmapnvod 44016 ovolsplit 45993 intsal 46335 sge0ss 46417 sge0fodjrnlem 46421 iundjiun 46465 meaiunlelem 46473 iscnrm3rlem7 48938 |
| Copyright terms: Public domain | W3C validator |