![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > difexd | Structured version Visualization version GIF version |
Description: Existence of a difference. (Contributed by SN, 16-Jul-2024.) |
Ref | Expression |
---|---|
difexd.1 | ⊢ (𝜑 → 𝐴 ∈ 𝑉) |
Ref | Expression |
---|---|
difexd | ⊢ (𝜑 → (𝐴 ∖ 𝐵) ∈ V) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | difexd.1 | . 2 ⊢ (𝜑 → 𝐴 ∈ 𝑉) | |
2 | difexg 5276 | . 2 ⊢ (𝐴 ∈ 𝑉 → (𝐴 ∖ 𝐵) ∈ V) | |
3 | 1, 2 | syl 17 | 1 ⊢ (𝜑 → (𝐴 ∖ 𝐵) ∈ V) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2106 Vcvv 3442 ∖ cdif 3899 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-ext 2708 ax-sep 5248 |
This theorem depends on definitions: df-bi 206 df-an 398 df-tru 1544 df-ex 1782 df-sb 2068 df-clab 2715 df-cleq 2729 df-clel 2815 df-rab 3405 df-v 3444 df-dif 3905 df-in 3909 df-ss 3919 |
This theorem is referenced by: ralxpmap 8760 domdifsn 8924 domunsncan 8942 mapdom2 9018 acni 9907 infdif 10071 infpss 10079 enfin1ai 10246 fpwwe2 10505 canthp1lem1 10514 hashf1lem1 14273 mrieqv2d 17446 mreexexlemd 17451 dpjidcl 19756 pnrmopn 22600 cmpfi 22665 csdfil 23151 ufileu 23176 filufint 23177 alexsublem 23301 bcth3 24601 iunmbl 24823 tdeglem4 25330 gsummptres2 31598 tocycfv 31661 cyc3conja 31709 esummono 32318 esumpad 32319 esumpad2 32320 insiga 32401 sexp2 34075 sexp3 34081 selvval2lemn 40530 selvval2lem4 40531 selvval2lem5 40532 selvcl 40533 fsuppssind 40591 clcnvlem 41602 dssmapfv3d 41998 dssmapnvod 41999 ovolsplit 43915 intsal 44255 sge0ss 44337 sge0fodjrnlem 44341 iundjiun 44385 meaiunlelem 44393 iscnrm3rlem7 46656 |
Copyright terms: Public domain | W3C validator |