| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > difexd | Structured version Visualization version GIF version | ||
| Description: Existence of a difference. (Contributed by SN, 16-Jul-2024.) |
| Ref | Expression |
|---|---|
| difexd.1 | ⊢ (𝜑 → 𝐴 ∈ 𝑉) |
| Ref | Expression |
|---|---|
| difexd | ⊢ (𝜑 → (𝐴 ∖ 𝐵) ∈ V) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | difexd.1 | . 2 ⊢ (𝜑 → 𝐴 ∈ 𝑉) | |
| 2 | difexg 5265 | . 2 ⊢ (𝐴 ∈ 𝑉 → (𝐴 ∖ 𝐵) ∈ V) | |
| 3 | 1, 2 | syl 17 | 1 ⊢ (𝜑 → (𝐴 ∖ 𝐵) ∈ V) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2111 Vcvv 3436 ∖ cdif 3894 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 ax-sep 5232 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1088 df-tru 1544 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-rab 3396 df-v 3438 df-dif 3900 df-in 3904 df-ss 3914 |
| This theorem is referenced by: sexp2 8076 sexp3 8083 ralxpmap 8820 domdifsn 8973 domunsncan 8990 mapdom2 9061 acni 9936 infdif 10099 infpss 10107 enfin1ai 10275 fpwwe2 10534 canthp1lem1 10543 hashf1lem1 14362 mrieqv2d 17545 mreexexlemd 17550 dpjidcl 19972 pnrmopn 23258 cmpfi 23323 csdfil 23809 ufileu 23834 filufint 23835 alexsublem 23959 bcth3 25258 iunmbl 25481 tdeglem4 25992 fdifsupp 32666 gsummptres2 33033 tocycfv 33078 cyc3conja 33126 rprmdvdsprod 33499 esummono 34067 esumpad 34068 esumpad2 34069 insiga 34150 selvcllemh 42672 selvcllem4 42673 selvcllem5 42674 selvcl 42675 selvval2 42676 selvvvval 42677 selvadd 42680 selvmul 42681 fsuppssind 42685 tfsconcatun 43429 oaun2 43473 oaun3 43474 clcnvlem 43715 dssmapfv3d 44111 dssmapnvod 44112 ovolsplit 46085 intsal 46427 sge0ss 46509 sge0fodjrnlem 46513 iundjiun 46557 meaiunlelem 46565 iscnrm3rlem7 49045 |
| Copyright terms: Public domain | W3C validator |