![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > difexd | Structured version Visualization version GIF version |
Description: Existence of a difference. (Contributed by SN, 16-Jul-2024.) |
Ref | Expression |
---|---|
difexd.1 | ⊢ (𝜑 → 𝐴 ∈ 𝑉) |
Ref | Expression |
---|---|
difexd | ⊢ (𝜑 → (𝐴 ∖ 𝐵) ∈ V) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | difexd.1 | . 2 ⊢ (𝜑 → 𝐴 ∈ 𝑉) | |
2 | difexg 5347 | . 2 ⊢ (𝐴 ∈ 𝑉 → (𝐴 ∖ 𝐵) ∈ V) | |
3 | 1, 2 | syl 17 | 1 ⊢ (𝜑 → (𝐴 ∖ 𝐵) ∈ V) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2108 Vcvv 3488 ∖ cdif 3973 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2711 ax-sep 5317 |
This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1089 df-tru 1540 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-rab 3444 df-v 3490 df-dif 3979 df-in 3983 df-ss 3993 |
This theorem is referenced by: sexp2 8187 sexp3 8194 ralxpmap 8954 domdifsn 9120 domunsncan 9138 mapdom2 9214 acni 10114 infdif 10277 infpss 10285 enfin1ai 10453 fpwwe2 10712 canthp1lem1 10721 hashf1lem1 14504 mrieqv2d 17697 mreexexlemd 17702 dpjidcl 20102 pnrmopn 23372 cmpfi 23437 csdfil 23923 ufileu 23948 filufint 23949 alexsublem 24073 bcth3 25384 iunmbl 25607 tdeglem4 26119 gsummptres2 33036 tocycfv 33102 cyc3conja 33150 rprmdvdsprod 33527 esummono 34018 esumpad 34019 esumpad2 34020 insiga 34101 selvcllemh 42535 selvcllem4 42536 selvcllem5 42537 selvcl 42538 selvval2 42539 selvvvval 42540 selvadd 42543 selvmul 42544 fsuppssind 42548 tfsconcatun 43299 oaun2 43343 oaun3 43344 clcnvlem 43585 dssmapfv3d 43981 dssmapnvod 43982 ovolsplit 45909 intsal 46251 sge0ss 46333 sge0fodjrnlem 46337 iundjiun 46381 meaiunlelem 46389 iscnrm3rlem7 48626 |
Copyright terms: Public domain | W3C validator |