| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > difexd | Structured version Visualization version GIF version | ||
| Description: Existence of a difference. (Contributed by SN, 16-Jul-2024.) |
| Ref | Expression |
|---|---|
| difexd.1 | ⊢ (𝜑 → 𝐴 ∈ 𝑉) |
| Ref | Expression |
|---|---|
| difexd | ⊢ (𝜑 → (𝐴 ∖ 𝐵) ∈ V) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | difexd.1 | . 2 ⊢ (𝜑 → 𝐴 ∈ 𝑉) | |
| 2 | difexg 5279 | . 2 ⊢ (𝐴 ∈ 𝑉 → (𝐴 ∖ 𝐵) ∈ V) | |
| 3 | 1, 2 | syl 17 | 1 ⊢ (𝜑 → (𝐴 ∖ 𝐵) ∈ V) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2109 Vcvv 3444 ∖ cdif 3908 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 ax-sep 5246 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1088 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-rab 3403 df-v 3446 df-dif 3914 df-in 3918 df-ss 3928 |
| This theorem is referenced by: sexp2 8102 sexp3 8109 ralxpmap 8846 domdifsn 9001 domunsncan 9018 mapdom2 9089 acni 9974 infdif 10137 infpss 10145 enfin1ai 10313 fpwwe2 10572 canthp1lem1 10581 hashf1lem1 14396 mrieqv2d 17580 mreexexlemd 17585 dpjidcl 19974 pnrmopn 23263 cmpfi 23328 csdfil 23814 ufileu 23839 filufint 23840 alexsublem 23964 bcth3 25264 iunmbl 25487 tdeglem4 25998 fdifsupp 32658 gsummptres2 33036 tocycfv 33081 cyc3conja 33129 rprmdvdsprod 33498 esummono 34037 esumpad 34038 esumpad2 34039 insiga 34120 selvcllemh 42561 selvcllem4 42562 selvcllem5 42563 selvcl 42564 selvval2 42565 selvvvval 42566 selvadd 42569 selvmul 42570 fsuppssind 42574 tfsconcatun 43319 oaun2 43363 oaun3 43364 clcnvlem 43605 dssmapfv3d 44001 dssmapnvod 44002 ovolsplit 45979 intsal 46321 sge0ss 46403 sge0fodjrnlem 46407 iundjiun 46451 meaiunlelem 46459 iscnrm3rlem7 48927 |
| Copyright terms: Public domain | W3C validator |