| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > difexd | Structured version Visualization version GIF version | ||
| Description: Existence of a difference. (Contributed by SN, 16-Jul-2024.) |
| Ref | Expression |
|---|---|
| difexd.1 | ⊢ (𝜑 → 𝐴 ∈ 𝑉) |
| Ref | Expression |
|---|---|
| difexd | ⊢ (𝜑 → (𝐴 ∖ 𝐵) ∈ V) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | difexd.1 | . 2 ⊢ (𝜑 → 𝐴 ∈ 𝑉) | |
| 2 | difexg 5268 | . 2 ⊢ (𝐴 ∈ 𝑉 → (𝐴 ∖ 𝐵) ∈ V) | |
| 3 | 1, 2 | syl 17 | 1 ⊢ (𝜑 → (𝐴 ∖ 𝐵) ∈ V) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2109 Vcvv 3436 ∖ cdif 3900 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 ax-sep 5235 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1088 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-rab 3395 df-v 3438 df-dif 3906 df-in 3910 df-ss 3920 |
| This theorem is referenced by: sexp2 8079 sexp3 8086 ralxpmap 8823 domdifsn 8977 domunsncan 8994 mapdom2 9065 acni 9939 infdif 10102 infpss 10110 enfin1ai 10278 fpwwe2 10537 canthp1lem1 10546 hashf1lem1 14362 mrieqv2d 17545 mreexexlemd 17550 dpjidcl 19939 pnrmopn 23228 cmpfi 23293 csdfil 23779 ufileu 23804 filufint 23805 alexsublem 23929 bcth3 25229 iunmbl 25452 tdeglem4 25963 fdifsupp 32635 gsummptres2 33015 tocycfv 33060 cyc3conja 33108 rprmdvdsprod 33480 esummono 34037 esumpad 34038 esumpad2 34039 insiga 34120 selvcllemh 42573 selvcllem4 42574 selvcllem5 42575 selvcl 42576 selvval2 42577 selvvvval 42578 selvadd 42581 selvmul 42582 fsuppssind 42586 tfsconcatun 43330 oaun2 43374 oaun3 43375 clcnvlem 43616 dssmapfv3d 44012 dssmapnvod 44013 ovolsplit 45989 intsal 46331 sge0ss 46413 sge0fodjrnlem 46417 iundjiun 46461 meaiunlelem 46469 iscnrm3rlem7 48950 |
| Copyright terms: Public domain | W3C validator |