![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > difexd | Structured version Visualization version GIF version |
Description: Existence of a difference. (Contributed by SN, 16-Jul-2024.) |
Ref | Expression |
---|---|
difexd.1 | ⊢ (𝜑 → 𝐴 ∈ 𝑉) |
Ref | Expression |
---|---|
difexd | ⊢ (𝜑 → (𝐴 ∖ 𝐵) ∈ V) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | difexd.1 | . 2 ⊢ (𝜑 → 𝐴 ∈ 𝑉) | |
2 | difexg 5325 | . 2 ⊢ (𝐴 ∈ 𝑉 → (𝐴 ∖ 𝐵) ∈ V) | |
3 | 1, 2 | syl 17 | 1 ⊢ (𝜑 → (𝐴 ∖ 𝐵) ∈ V) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2099 Vcvv 3463 ∖ cdif 3944 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-ext 2697 ax-sep 5295 |
This theorem depends on definitions: df-bi 206 df-an 395 df-3an 1086 df-tru 1537 df-ex 1775 df-sb 2061 df-clab 2704 df-cleq 2718 df-clel 2803 df-rab 3421 df-v 3465 df-dif 3950 df-in 3954 df-ss 3964 |
This theorem is referenced by: sexp2 8150 sexp3 8157 ralxpmap 8915 domdifsn 9082 domunsncan 9100 mapdom2 9176 acni 10079 infdif 10241 infpss 10249 enfin1ai 10416 fpwwe2 10675 canthp1lem1 10684 hashf1lem1 14466 mrieqv2d 17645 mreexexlemd 17650 dpjidcl 20052 pnrmopn 23333 cmpfi 23398 csdfil 23884 ufileu 23909 filufint 23910 alexsublem 24034 bcth3 25345 iunmbl 25568 tdeglem4 26081 gsummptres2 32923 tocycfv 32989 cyc3conja 33037 rprmdvdsprod 33413 esummono 33898 esumpad 33899 esumpad2 33900 insiga 33981 selvcllemh 42268 selvcllem4 42269 selvcllem5 42270 selvcl 42271 selvval2 42272 selvvvval 42273 selvadd 42276 selvmul 42277 fsuppssind 42281 tfsconcatun 43038 oaun2 43082 oaun3 43083 clcnvlem 43325 dssmapfv3d 43721 dssmapnvod 43722 ovolsplit 45643 intsal 45985 sge0ss 46067 sge0fodjrnlem 46071 iundjiun 46115 meaiunlelem 46123 iscnrm3rlem7 48314 |
Copyright terms: Public domain | W3C validator |