Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > difexd | Structured version Visualization version GIF version |
Description: Existence of a difference. (Contributed by SN, 16-Jul-2024.) |
Ref | Expression |
---|---|
difexd.1 | ⊢ (𝜑 → 𝐴 ∈ 𝑉) |
Ref | Expression |
---|---|
difexd | ⊢ (𝜑 → (𝐴 ∖ 𝐵) ∈ V) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | difexd.1 | . 2 ⊢ (𝜑 → 𝐴 ∈ 𝑉) | |
2 | difexg 5251 | . 2 ⊢ (𝐴 ∈ 𝑉 → (𝐴 ∖ 𝐵) ∈ V) | |
3 | 1, 2 | syl 17 | 1 ⊢ (𝜑 → (𝐴 ∖ 𝐵) ∈ V) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2106 Vcvv 3432 ∖ cdif 3884 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-ext 2709 ax-sep 5223 |
This theorem depends on definitions: df-bi 206 df-an 397 df-tru 1542 df-ex 1783 df-sb 2068 df-clab 2716 df-cleq 2730 df-clel 2816 df-rab 3073 df-v 3434 df-dif 3890 df-in 3894 df-ss 3904 |
This theorem is referenced by: ralxpmap 8684 domdifsn 8841 domunsncan 8859 mapdom2 8935 acni 9801 infdif 9965 infpss 9973 enfin1ai 10140 fpwwe2 10399 canthp1lem1 10408 hashf1lem1 14168 mrieqv2d 17348 mreexexlemd 17353 dpjidcl 19661 pnrmopn 22494 cmpfi 22559 csdfil 23045 ufileu 23070 filufint 23071 alexsublem 23195 bcth3 24495 iunmbl 24717 tdeglem4 25224 gsummptres2 31313 tocycfv 31376 cyc3conja 31424 esummono 32022 esumpad 32023 esumpad2 32024 insiga 32105 sexp2 33793 sexp3 33799 selvval2lemn 40227 selvval2lem4 40228 selvval2lem5 40229 selvcl 40230 fsuppssind 40282 clcnvlem 41231 dssmapfv3d 41627 dssmapnvod 41628 ovolsplit 43529 intsal 43869 sge0ss 43950 sge0fodjrnlem 43954 iundjiun 43998 meaiunlelem 44006 iscnrm3rlem7 46240 |
Copyright terms: Public domain | W3C validator |