![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > difexd | Structured version Visualization version GIF version |
Description: Existence of a difference. (Contributed by SN, 16-Jul-2024.) |
Ref | Expression |
---|---|
difexd.1 | ⊢ (𝜑 → 𝐴 ∈ 𝑉) |
Ref | Expression |
---|---|
difexd | ⊢ (𝜑 → (𝐴 ∖ 𝐵) ∈ V) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | difexd.1 | . 2 ⊢ (𝜑 → 𝐴 ∈ 𝑉) | |
2 | difexg 5334 | . 2 ⊢ (𝐴 ∈ 𝑉 → (𝐴 ∖ 𝐵) ∈ V) | |
3 | 1, 2 | syl 17 | 1 ⊢ (𝜑 → (𝐴 ∖ 𝐵) ∈ V) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2105 Vcvv 3477 ∖ cdif 3959 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1791 ax-4 1805 ax-5 1907 ax-6 1964 ax-7 2004 ax-8 2107 ax-9 2115 ax-ext 2705 ax-sep 5301 |
This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1088 df-tru 1539 df-ex 1776 df-sb 2062 df-clab 2712 df-cleq 2726 df-clel 2813 df-rab 3433 df-v 3479 df-dif 3965 df-in 3969 df-ss 3979 |
This theorem is referenced by: sexp2 8169 sexp3 8176 ralxpmap 8934 domdifsn 9092 domunsncan 9110 mapdom2 9186 acni 10082 infdif 10245 infpss 10253 enfin1ai 10421 fpwwe2 10680 canthp1lem1 10689 hashf1lem1 14490 mrieqv2d 17683 mreexexlemd 17688 dpjidcl 20092 pnrmopn 23366 cmpfi 23431 csdfil 23917 ufileu 23942 filufint 23943 alexsublem 24067 bcth3 25378 iunmbl 25601 tdeglem4 26113 fdifsupp 32699 gsummptres2 33038 tocycfv 33111 cyc3conja 33159 rprmdvdsprod 33541 esummono 34034 esumpad 34035 esumpad2 34036 insiga 34117 selvcllemh 42566 selvcllem4 42567 selvcllem5 42568 selvcl 42569 selvval2 42570 selvvvval 42571 selvadd 42574 selvmul 42575 fsuppssind 42579 tfsconcatun 43326 oaun2 43370 oaun3 43371 clcnvlem 43612 dssmapfv3d 44008 dssmapnvod 44009 ovolsplit 45943 intsal 46285 sge0ss 46367 sge0fodjrnlem 46371 iundjiun 46415 meaiunlelem 46423 iscnrm3rlem7 48742 |
Copyright terms: Public domain | W3C validator |