| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > difexd | Structured version Visualization version GIF version | ||
| Description: Existence of a difference. (Contributed by SN, 16-Jul-2024.) |
| Ref | Expression |
|---|---|
| difexd.1 | ⊢ (𝜑 → 𝐴 ∈ 𝑉) |
| Ref | Expression |
|---|---|
| difexd | ⊢ (𝜑 → (𝐴 ∖ 𝐵) ∈ V) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | difexd.1 | . 2 ⊢ (𝜑 → 𝐴 ∈ 𝑉) | |
| 2 | difexg 5284 | . 2 ⊢ (𝐴 ∈ 𝑉 → (𝐴 ∖ 𝐵) ∈ V) | |
| 3 | 1, 2 | syl 17 | 1 ⊢ (𝜑 → (𝐴 ∖ 𝐵) ∈ V) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2109 Vcvv 3447 ∖ cdif 3911 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 ax-sep 5251 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1088 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-rab 3406 df-v 3449 df-dif 3917 df-in 3921 df-ss 3931 |
| This theorem is referenced by: sexp2 8125 sexp3 8132 ralxpmap 8869 domdifsn 9024 domunsncan 9041 mapdom2 9112 acni 9998 infdif 10161 infpss 10169 enfin1ai 10337 fpwwe2 10596 canthp1lem1 10605 hashf1lem1 14420 mrieqv2d 17600 mreexexlemd 17605 dpjidcl 19990 pnrmopn 23230 cmpfi 23295 csdfil 23781 ufileu 23806 filufint 23807 alexsublem 23931 bcth3 25231 iunmbl 25454 tdeglem4 25965 fdifsupp 32608 gsummptres2 32993 tocycfv 33066 cyc3conja 33114 rprmdvdsprod 33505 esummono 34044 esumpad 34045 esumpad2 34046 insiga 34127 selvcllemh 42568 selvcllem4 42569 selvcllem5 42570 selvcl 42571 selvval2 42572 selvvvval 42573 selvadd 42576 selvmul 42577 fsuppssind 42581 tfsconcatun 43326 oaun2 43370 oaun3 43371 clcnvlem 43612 dssmapfv3d 44008 dssmapnvod 44009 ovolsplit 45986 intsal 46328 sge0ss 46410 sge0fodjrnlem 46414 iundjiun 46458 meaiunlelem 46466 iscnrm3rlem7 48934 |
| Copyright terms: Public domain | W3C validator |