Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > difexd | Structured version Visualization version GIF version |
Description: Existence of a difference. (Contributed by SN, 16-Jul-2024.) |
Ref | Expression |
---|---|
difexd.1 | ⊢ (𝜑 → 𝐴 ∈ 𝑉) |
Ref | Expression |
---|---|
difexd | ⊢ (𝜑 → (𝐴 ∖ 𝐵) ∈ V) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | difexd.1 | . 2 ⊢ (𝜑 → 𝐴 ∈ 𝑉) | |
2 | difexg 5246 | . 2 ⊢ (𝐴 ∈ 𝑉 → (𝐴 ∖ 𝐵) ∈ V) | |
3 | 1, 2 | syl 17 | 1 ⊢ (𝜑 → (𝐴 ∖ 𝐵) ∈ V) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2108 Vcvv 3422 ∖ cdif 3880 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-ext 2709 ax-sep 5218 |
This theorem depends on definitions: df-bi 206 df-an 396 df-tru 1542 df-ex 1784 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-rab 3072 df-v 3424 df-dif 3886 df-in 3890 df-ss 3900 |
This theorem is referenced by: ralxpmap 8642 domdifsn 8795 domunsncan 8812 mapdom2 8884 acni 9732 infdif 9896 infpss 9904 enfin1ai 10071 fpwwe2 10330 canthp1lem1 10339 hashf1lem1 14096 mrieqv2d 17265 mreexexlemd 17270 dpjidcl 19576 pnrmopn 22402 cmpfi 22467 csdfil 22953 ufileu 22978 filufint 22979 alexsublem 23103 bcth3 24400 iunmbl 24622 tdeglem4 25129 gsummptres2 31215 tocycfv 31278 cyc3conja 31326 esummono 31922 esumpad 31923 esumpad2 31924 insiga 32005 sexp2 33720 sexp3 33726 selvval2lemn 40153 selvval2lem4 40154 selvval2lem5 40155 selvcl 40156 fsuppssind 40205 clcnvlem 41120 dssmapfv3d 41516 dssmapnvod 41517 ovolsplit 43419 intsal 43759 sge0ss 43840 sge0fodjrnlem 43844 iundjiun 43888 meaiunlelem 43896 iscnrm3rlem7 46128 |
Copyright terms: Public domain | W3C validator |