| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > difexd | Structured version Visualization version GIF version | ||
| Description: Existence of a difference. (Contributed by SN, 16-Jul-2024.) |
| Ref | Expression |
|---|---|
| difexd.1 | ⊢ (𝜑 → 𝐴 ∈ 𝑉) |
| Ref | Expression |
|---|---|
| difexd | ⊢ (𝜑 → (𝐴 ∖ 𝐵) ∈ V) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | difexd.1 | . 2 ⊢ (𝜑 → 𝐴 ∈ 𝑉) | |
| 2 | difexg 5299 | . 2 ⊢ (𝐴 ∈ 𝑉 → (𝐴 ∖ 𝐵) ∈ V) | |
| 3 | 1, 2 | syl 17 | 1 ⊢ (𝜑 → (𝐴 ∖ 𝐵) ∈ V) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2108 Vcvv 3459 ∖ cdif 3923 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2707 ax-sep 5266 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1088 df-tru 1543 df-ex 1780 df-sb 2065 df-clab 2714 df-cleq 2727 df-clel 2809 df-rab 3416 df-v 3461 df-dif 3929 df-in 3933 df-ss 3943 |
| This theorem is referenced by: sexp2 8145 sexp3 8152 ralxpmap 8910 domdifsn 9068 domunsncan 9086 mapdom2 9162 acni 10059 infdif 10222 infpss 10230 enfin1ai 10398 fpwwe2 10657 canthp1lem1 10666 hashf1lem1 14473 mrieqv2d 17651 mreexexlemd 17656 dpjidcl 20041 pnrmopn 23281 cmpfi 23346 csdfil 23832 ufileu 23857 filufint 23858 alexsublem 23982 bcth3 25283 iunmbl 25506 tdeglem4 26017 fdifsupp 32662 gsummptres2 33047 tocycfv 33120 cyc3conja 33168 rprmdvdsprod 33549 esummono 34085 esumpad 34086 esumpad2 34087 insiga 34168 selvcllemh 42603 selvcllem4 42604 selvcllem5 42605 selvcl 42606 selvval2 42607 selvvvval 42608 selvadd 42611 selvmul 42612 fsuppssind 42616 tfsconcatun 43361 oaun2 43405 oaun3 43406 clcnvlem 43647 dssmapfv3d 44043 dssmapnvod 44044 ovolsplit 46017 intsal 46359 sge0ss 46441 sge0fodjrnlem 46445 iundjiun 46489 meaiunlelem 46497 iscnrm3rlem7 48920 |
| Copyright terms: Public domain | W3C validator |