New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > addcexlem | GIF version |
Description: The expression at the heart of dfaddc2 4381 is a set. (Contributed by SF, 17-Jan-2015.) |
Ref | Expression |
---|---|
addcexlem | ⊢ ( Ins3k ∼ (( Ins3k Sk ∩ Ins2k Sk ) “k ℘1℘11c) ∖ (( Ins2k Ins2k Sk ⊕ ( Ins2k Ins3k Sk ∪ Ins3k SIk SIk Sk )) “k ℘1℘1℘1℘11c)) ∈ V |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ssetkex 4294 | . . . . . . 7 ⊢ Sk ∈ V | |
2 | 1 | ins3kex 4308 | . . . . . 6 ⊢ Ins3k Sk ∈ V |
3 | 1 | ins2kex 4307 | . . . . . 6 ⊢ Ins2k Sk ∈ V |
4 | 2, 3 | inex 4105 | . . . . 5 ⊢ ( Ins3k Sk ∩ Ins2k Sk ) ∈ V |
5 | 1cex 4142 | . . . . . . 7 ⊢ 1c ∈ V | |
6 | 5 | pw1ex 4303 | . . . . . 6 ⊢ ℘11c ∈ V |
7 | 6 | pw1ex 4303 | . . . . 5 ⊢ ℘1℘11c ∈ V |
8 | 4, 7 | imakex 4300 | . . . 4 ⊢ (( Ins3k Sk ∩ Ins2k Sk ) “k ℘1℘11c) ∈ V |
9 | 8 | complex 4104 | . . 3 ⊢ ∼ (( Ins3k Sk ∩ Ins2k Sk ) “k ℘1℘11c) ∈ V |
10 | 9 | ins3kex 4308 | . 2 ⊢ Ins3k ∼ (( Ins3k Sk ∩ Ins2k Sk ) “k ℘1℘11c) ∈ V |
11 | 3 | ins2kex 4307 | . . . 4 ⊢ Ins2k Ins2k Sk ∈ V |
12 | 2 | ins2kex 4307 | . . . . 5 ⊢ Ins2k Ins3k Sk ∈ V |
13 | 1 | sikex 4297 | . . . . . . 7 ⊢ SIk Sk ∈ V |
14 | 13 | sikex 4297 | . . . . . 6 ⊢ SIk SIk Sk ∈ V |
15 | 14 | ins3kex 4308 | . . . . 5 ⊢ Ins3k SIk SIk Sk ∈ V |
16 | 12, 15 | unex 4106 | . . . 4 ⊢ ( Ins2k Ins3k Sk ∪ Ins3k SIk SIk Sk ) ∈ V |
17 | 11, 16 | symdifex 4108 | . . 3 ⊢ ( Ins2k Ins2k Sk ⊕ ( Ins2k Ins3k Sk ∪ Ins3k SIk SIk Sk )) ∈ V |
18 | 7 | pw1ex 4303 | . . . 4 ⊢ ℘1℘1℘11c ∈ V |
19 | 18 | pw1ex 4303 | . . 3 ⊢ ℘1℘1℘1℘11c ∈ V |
20 | 17, 19 | imakex 4300 | . 2 ⊢ (( Ins2k Ins2k Sk ⊕ ( Ins2k Ins3k Sk ∪ Ins3k SIk SIk Sk )) “k ℘1℘1℘1℘11c) ∈ V |
21 | 10, 20 | difex 4107 | 1 ⊢ ( Ins3k ∼ (( Ins3k Sk ∩ Ins2k Sk ) “k ℘1℘11c) ∖ (( Ins2k Ins2k Sk ⊕ ( Ins2k Ins3k Sk ∪ Ins3k SIk SIk Sk )) “k ℘1℘1℘1℘11c)) ∈ V |
Colors of variables: wff setvar class |
Syntax hints: ∈ wcel 1710 Vcvv 2859 ∼ ccompl 3205 ∖ cdif 3206 ∪ cun 3207 ∩ cin 3208 ⊕ csymdif 3209 1cc1c 4134 ℘1cpw1 4135 Ins2k cins2k 4176 Ins3k cins3k 4177 “k cimak 4179 SIk csik 4181 Sk cssetk 4183 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 ax-ext 2334 ax-nin 4078 ax-xp 4079 ax-cnv 4080 ax-1c 4081 ax-sset 4082 ax-si 4083 ax-ins2 4084 ax-ins3 4085 ax-typlower 4086 ax-sn 4087 |
This theorem depends on definitions: df-bi 177 df-or 359 df-an 360 df-3an 936 df-nan 1288 df-tru 1319 df-ex 1542 df-nf 1545 df-sb 1649 df-clab 2340 df-cleq 2346 df-clel 2349 df-nfc 2478 df-ne 2518 df-ral 2619 df-rex 2620 df-v 2861 df-nin 3211 df-compl 3212 df-in 3213 df-un 3214 df-dif 3215 df-symdif 3216 df-ss 3259 df-nul 3551 df-pw 3724 df-sn 3741 df-pr 3742 df-opk 4058 df-1c 4136 df-pw1 4137 df-xpk 4185 df-cnvk 4186 df-ins2k 4187 df-ins3k 4188 df-imak 4189 df-p6 4191 df-sik 4192 df-ssetk 4193 |
This theorem is referenced by: addcexg 4393 nncex 4396 nnc0suc 4412 nncaddccl 4419 nnsucelrlem1 4424 preaddccan2lem1 4454 ltfinex 4464 evenodddisjlem1 4515 phiexg 4571 opexg 4587 proj1exg 4591 proj2exg 4592 phialllem1 4616 setconslem5 4735 1stex 4739 swapex 4742 |
Copyright terms: Public domain | W3C validator |