Step | Hyp | Ref
| Expression |
1 | | brcnv 4893 |
. . . . . . . . . 10
⊢ (y◡1st w ↔ w1st y) |
2 | | vex 2863 |
. . . . . . . . . . 11
⊢ y ∈
V |
3 | 2 | br1st 4859 |
. . . . . . . . . 10
⊢ (w1st y ↔ ∃x w = 〈y, x〉) |
4 | 1, 3 | bitri 240 |
. . . . . . . . 9
⊢ (y◡1st w ↔ ∃x w = 〈y, x〉) |
5 | 4 | anbi1i 676 |
. . . . . . . 8
⊢ ((y◡1st w ∧ w( AddC ↾ (V × {1c}))z) ↔ (∃x w = 〈y, x〉 ∧ w( AddC ↾ (V × {1c}))z)) |
6 | | 19.41v 1901 |
. . . . . . . 8
⊢ (∃x(w = 〈y, x〉 ∧ w( AddC ↾ (V × {1c}))z) ↔ (∃x w = 〈y, x〉 ∧ w( AddC ↾ (V × {1c}))z)) |
7 | 5, 6 | bitr4i 243 |
. . . . . . 7
⊢ ((y◡1st w ∧ w( AddC ↾ (V × {1c}))z) ↔ ∃x(w = 〈y, x〉 ∧ w( AddC ↾ (V × {1c}))z)) |
8 | 7 | exbii 1582 |
. . . . . 6
⊢ (∃w(y◡1st w ∧ w( AddC ↾ (V × {1c}))z) ↔ ∃w∃x(w = 〈y, x〉 ∧ w( AddC ↾ (V × {1c}))z)) |
9 | | excom 1741 |
. . . . . . 7
⊢ (∃w∃x(w = 〈y, x〉 ∧ w( AddC ↾ (V × {1c}))z) ↔ ∃x∃w(w = 〈y, x〉 ∧ w( AddC ↾ (V × {1c}))z)) |
10 | | vex 2863 |
. . . . . . . . . 10
⊢ x ∈
V |
11 | 2, 10 | opex 4589 |
. . . . . . . . 9
⊢ 〈y, x〉 ∈ V |
12 | | breq1 4643 |
. . . . . . . . . 10
⊢ (w = 〈y, x〉 → (w(
AddC ↾ (V
× {1c}))z ↔
〈y,
x〉( AddC ↾ (V ×
{1c}))z)) |
13 | | brres 4950 |
. . . . . . . . . . 11
⊢ (〈y, x〉( AddC ↾ (V ×
{1c}))z ↔ (〈y, x〉 AddC z ∧ 〈y, x〉 ∈ (V ×
{1c}))) |
14 | 2, 10 | braddcfn 5827 |
. . . . . . . . . . . 12
⊢ (〈y, x〉 AddC z ↔
(y +c x) = z) |
15 | | opelxp 4812 |
. . . . . . . . . . . . . 14
⊢ (〈y, x〉 ∈ (V × {1c}) ↔
(y ∈ V
∧ x ∈ {1c})) |
16 | 2, 15 | mpbiran 884 |
. . . . . . . . . . . . 13
⊢ (〈y, x〉 ∈ (V × {1c}) ↔
x ∈
{1c}) |
17 | | elsn 3749 |
. . . . . . . . . . . . 13
⊢ (x ∈
{1c} ↔ x =
1c) |
18 | 16, 17 | bitri 240 |
. . . . . . . . . . . 12
⊢ (〈y, x〉 ∈ (V × {1c}) ↔
x = 1c) |
19 | 14, 18 | anbi12ci 679 |
. . . . . . . . . . 11
⊢ ((〈y, x〉 AddC z ∧ 〈y, x〉 ∈ (V ×
{1c})) ↔ (x =
1c ∧ (y +c x) = z)) |
20 | 13, 19 | bitri 240 |
. . . . . . . . . 10
⊢ (〈y, x〉( AddC ↾ (V ×
{1c}))z ↔ (x = 1c ∧ (y
+c x) = z)) |
21 | 12, 20 | syl6bb 252 |
. . . . . . . . 9
⊢ (w = 〈y, x〉 → (w(
AddC ↾ (V
× {1c}))z ↔
(x = 1c ∧ (y
+c x) = z))) |
22 | 11, 21 | ceqsexv 2895 |
. . . . . . . 8
⊢ (∃w(w = 〈y, x〉 ∧ w( AddC ↾ (V × {1c}))z) ↔ (x =
1c ∧ (y +c x) = z)) |
23 | 22 | exbii 1582 |
. . . . . . 7
⊢ (∃x∃w(w = 〈y, x〉 ∧ w( AddC ↾ (V × {1c}))z) ↔ ∃x(x = 1c ∧ (y
+c x) = z)) |
24 | 9, 23 | bitri 240 |
. . . . . 6
⊢ (∃w∃x(w = 〈y, x〉 ∧ w( AddC ↾ (V × {1c}))z) ↔ ∃x(x = 1c ∧ (y
+c x) = z)) |
25 | 8, 24 | bitri 240 |
. . . . 5
⊢ (∃w(y◡1st w ∧ w( AddC ↾ (V × {1c}))z) ↔ ∃x(x = 1c ∧ (y
+c x) = z)) |
26 | | 1cex 4143 |
. . . . . 6
⊢
1c ∈
V |
27 | | addceq2 4385 |
. . . . . . 7
⊢ (x = 1c → (y +c x) = (y
+c 1c)) |
28 | 27 | eqeq1d 2361 |
. . . . . 6
⊢ (x = 1c → ((y +c x) = z ↔
(y +c
1c) = z)) |
29 | 26, 28 | ceqsexv 2895 |
. . . . 5
⊢ (∃x(x = 1c ∧ (y
+c x) = z) ↔ (y
+c 1c) = z) |
30 | 25, 29 | bitri 240 |
. . . 4
⊢ (∃w(y◡1st w ∧ w( AddC ↾ (V × {1c}))z) ↔ (y
+c 1c) = z) |
31 | | opelco 4885 |
. . . 4
⊢ (〈y, z〉 ∈ (( AddC ↾ (V × {1c})) ∘ ◡1st ) ↔ ∃w(y◡1st w ∧ w( AddC ↾ (V × {1c}))z)) |
32 | | mptv 5719 |
. . . . . 6
⊢ (x ∈ V ↦ (x
+c 1c)) = {〈x, w〉 ∣ w =
(x +c
1c)} |
33 | 32 | eleq2i 2417 |
. . . . 5
⊢ (〈y, z〉 ∈ (x ∈ V ↦ (x +c 1c)) ↔
〈y,
z〉 ∈ {〈x, w〉 ∣ w = (x
+c 1c)}) |
34 | | vex 2863 |
. . . . . 6
⊢ z ∈
V |
35 | | addceq1 4384 |
. . . . . . 7
⊢ (x = y →
(x +c
1c) = (y
+c 1c)) |
36 | 35 | eqeq2d 2364 |
. . . . . 6
⊢ (x = y →
(w = (x
+c 1c) ↔ w = (y
+c 1c))) |
37 | | eqeq1 2359 |
. . . . . . 7
⊢ (w = z →
(w = (y
+c 1c) ↔ z = (y
+c 1c))) |
38 | | eqcom 2355 |
. . . . . . 7
⊢ (z = (y
+c 1c) ↔ (y +c 1c) =
z) |
39 | 37, 38 | syl6bb 252 |
. . . . . 6
⊢ (w = z →
(w = (y
+c 1c) ↔ (y +c 1c) =
z)) |
40 | 2, 34, 36, 39 | opelopab 4709 |
. . . . 5
⊢ (〈y, z〉 ∈ {〈x, w〉 ∣ w = (x
+c 1c)} ↔ (y +c 1c) =
z) |
41 | 33, 40 | bitri 240 |
. . . 4
⊢ (〈y, z〉 ∈ (x ∈ V ↦ (x +c 1c)) ↔
(y +c
1c) = z) |
42 | 30, 31, 41 | 3bitr4ri 269 |
. . 3
⊢ (〈y, z〉 ∈ (x ∈ V ↦ (x +c 1c)) ↔
〈y,
z〉 ∈ (( AddC ↾ (V × {1c})) ∘ ◡1st )) |
43 | 42 | eqrelriv 4851 |
. 2
⊢ (x ∈ V ↦ (x
+c 1c)) = (( AddC ↾ (V ×
{1c})) ∘ ◡1st ) |
44 | | addcfnex 5825 |
. . . 4
⊢ AddC ∈
V |
45 | | vvex 4110 |
. . . . 5
⊢ V ∈ V |
46 | | snex 4112 |
. . . . 5
⊢
{1c} ∈
V |
47 | 45, 46 | xpex 5116 |
. . . 4
⊢ (V ×
{1c}) ∈ V |
48 | 44, 47 | resex 5118 |
. . 3
⊢ ( AddC ↾ (V ×
{1c})) ∈ V |
49 | | 1stex 4740 |
. . . 4
⊢ 1st
∈ V |
50 | 49 | cnvex 5103 |
. . 3
⊢ ◡1st ∈ V |
51 | 48, 50 | coex 4751 |
. 2
⊢ (( AddC ↾ (V ×
{1c})) ∘ ◡1st ) ∈ V |
52 | 43, 51 | eqeltri 2423 |
1
⊢ (x ∈ V ↦ (x
+c 1c)) ∈
V |