Step | Hyp | Ref
| Expression |
1 | | df-domfn 5771 |
. . 3
⊢ Dom = (x ∈ V ↦ dom
x) |
2 | | elin 3220 |
. . . . . . . . 9
⊢ (⟨{w}, ⟨{z}, ⟨{y}, x⟩⟩⟩ ∈ ( Ins4 SI3 Swap
∩ Ins2 Ins2 S ) ↔ (⟨{w}, ⟨{z}, ⟨{y}, x⟩⟩⟩ ∈ Ins4 SI3 Swap
∧ ⟨{w}, ⟨{z}, ⟨{y}, x⟩⟩⟩ ∈ Ins2 Ins2 S )) |
3 | | vex 2863 |
. . . . . . . . . . . 12
⊢ x ∈
V |
4 | 3 | oqelins4 5795 |
. . . . . . . . . . 11
⊢ (⟨{w}, ⟨{z}, ⟨{y}, x⟩⟩⟩ ∈ Ins4 SI3 Swap
↔ ⟨{w}, ⟨{z}, {y}⟩⟩ ∈ SI3 Swap
) |
5 | | vex 2863 |
. . . . . . . . . . . . 13
⊢ w ∈
V |
6 | | vex 2863 |
. . . . . . . . . . . . 13
⊢ z ∈
V |
7 | | vex 2863 |
. . . . . . . . . . . . 13
⊢ y ∈
V |
8 | 5, 6, 7 | otsnelsi3 5806 |
. . . . . . . . . . . 12
⊢ (⟨{w}, ⟨{z}, {y}⟩⟩ ∈ SI3 Swap
↔ ⟨w, ⟨z, y⟩⟩ ∈ Swap
) |
9 | | df-br 4641 |
. . . . . . . . . . . 12
⊢ (w Swap ⟨z, y⟩ ↔ ⟨w, ⟨z, y⟩⟩ ∈ Swap ) |
10 | 6, 7 | brswap2 4861 |
. . . . . . . . . . . 12
⊢ (w Swap ⟨z, y⟩ ↔ w = ⟨y, z⟩) |
11 | 8, 9, 10 | 3bitr2i 264 |
. . . . . . . . . . 11
⊢ (⟨{w}, ⟨{z}, {y}⟩⟩ ∈ SI3 Swap
↔ w = ⟨y, z⟩) |
12 | 4, 11 | bitri 240 |
. . . . . . . . . 10
⊢ (⟨{w}, ⟨{z}, ⟨{y}, x⟩⟩⟩ ∈ Ins4 SI3 Swap
↔ w = ⟨y, z⟩) |
13 | | snex 4112 |
. . . . . . . . . . . 12
⊢ {z} ∈
V |
14 | 13 | otelins2 5792 |
. . . . . . . . . . 11
⊢ (⟨{w}, ⟨{z}, ⟨{y}, x⟩⟩⟩ ∈ Ins2 Ins2 S ↔ ⟨{w}, ⟨{y}, x⟩⟩ ∈ Ins2 S ) |
15 | | snex 4112 |
. . . . . . . . . . . . 13
⊢ {y} ∈
V |
16 | 15 | otelins2 5792 |
. . . . . . . . . . . 12
⊢ (⟨{w}, ⟨{y}, x⟩⟩ ∈ Ins2 S ↔ ⟨{w}, x⟩ ∈ S
) |
17 | 5, 3 | opelssetsn 4761 |
. . . . . . . . . . . 12
⊢ (⟨{w}, x⟩ ∈ S ↔ w ∈ x) |
18 | 16, 17 | bitri 240 |
. . . . . . . . . . 11
⊢ (⟨{w}, ⟨{y}, x⟩⟩ ∈ Ins2 S ↔ w ∈ x) |
19 | 14, 18 | bitri 240 |
. . . . . . . . . 10
⊢ (⟨{w}, ⟨{z}, ⟨{y}, x⟩⟩⟩ ∈ Ins2 Ins2 S ↔ w ∈ x) |
20 | 12, 19 | anbi12i 678 |
. . . . . . . . 9
⊢ ((⟨{w}, ⟨{z}, ⟨{y}, x⟩⟩⟩ ∈ Ins4 SI3 Swap
∧ ⟨{w}, ⟨{z}, ⟨{y}, x⟩⟩⟩ ∈ Ins2 Ins2 S ) ↔ (w = ⟨y, z⟩ ∧ w ∈ x)) |
21 | 2, 20 | bitri 240 |
. . . . . . . 8
⊢ (⟨{w}, ⟨{z}, ⟨{y}, x⟩⟩⟩ ∈ ( Ins4 SI3 Swap
∩ Ins2 Ins2 S ) ↔ (w = ⟨y, z⟩ ∧ w ∈ x)) |
22 | 21 | exbii 1582 |
. . . . . . 7
⊢ (∃w⟨{w}, ⟨{z}, ⟨{y}, x⟩⟩⟩ ∈ ( Ins4 SI3 Swap
∩ Ins2 Ins2 S ) ↔ ∃w(w = ⟨y, z⟩ ∧ w ∈ x)) |
23 | | elima1c 4948 |
. . . . . . 7
⊢ (⟨{z}, ⟨{y}, x⟩⟩ ∈ (( Ins4 SI3
Swap ∩ Ins2
Ins2 S ) “
1c) ↔ ∃w⟨{w}, ⟨{z}, ⟨{y}, x⟩⟩⟩ ∈ ( Ins4 SI3
Swap ∩ Ins2
Ins2 S
)) |
24 | | df-clel 2349 |
. . . . . . 7
⊢ (⟨y, z⟩ ∈ x ↔
∃w(w = ⟨y, z⟩ ∧ w ∈ x)) |
25 | 22, 23, 24 | 3bitr4i 268 |
. . . . . 6
⊢ (⟨{z}, ⟨{y}, x⟩⟩ ∈ (( Ins4 SI3
Swap ∩ Ins2
Ins2 S ) “
1c) ↔ ⟨y, z⟩ ∈ x) |
26 | 25 | exbii 1582 |
. . . . 5
⊢ (∃z⟨{z}, ⟨{y}, x⟩⟩ ∈ (( Ins4 SI3
Swap ∩ Ins2
Ins2 S ) “
1c) ↔ ∃z⟨y, z⟩ ∈ x) |
27 | | elima1c 4948 |
. . . . 5
⊢ (⟨{y}, x⟩ ∈ ((( Ins4 SI3 Swap
∩ Ins2 Ins2 S ) “
1c) “ 1c) ↔ ∃z⟨{z}, ⟨{y}, x⟩⟩ ∈ (( Ins4 SI3
Swap ∩ Ins2
Ins2 S ) “
1c)) |
28 | | eldm2 4900 |
. . . . 5
⊢ (y ∈ dom x ↔ ∃z⟨y, z⟩ ∈ x) |
29 | 26, 27, 28 | 3bitr4i 268 |
. . . 4
⊢ (⟨{y}, x⟩ ∈ ((( Ins4 SI3 Swap
∩ Ins2 Ins2 S ) “
1c) “ 1c) ↔ y ∈ dom x) |
30 | 29 | releqmpt 5809 |
. . 3
⊢ ((V × V)
∩ ◡ ∼ (( Ins3 S ⊕ Ins2 ((( Ins4 SI3 Swap
∩ Ins2 Ins2 S ) “
1c) “ 1c)) “
1c)) = (x ∈ V ↦ dom
x) |
31 | 1, 30 | eqtr4i 2376 |
. 2
⊢ Dom = ((V × V) ∩ ◡ ∼ (( Ins3
S ⊕ Ins2 (((
Ins4 SI3 Swap
∩ Ins2 Ins2 S ) “
1c) “ 1c)) “
1c)) |
32 | | vvex 4110 |
. . 3
⊢ V ∈ V |
33 | | swapex 4743 |
. . . . . . . 8
⊢ Swap ∈
V |
34 | 33 | si3ex 5807 |
. . . . . . 7
⊢ SI3 Swap
∈ V |
35 | 34 | ins4ex 5800 |
. . . . . 6
⊢ Ins4 SI3
Swap ∈
V |
36 | | ssetex 4745 |
. . . . . . . 8
⊢ S ∈
V |
37 | 36 | ins2ex 5798 |
. . . . . . 7
⊢ Ins2 S ∈ V |
38 | 37 | ins2ex 5798 |
. . . . . 6
⊢ Ins2 Ins2 S ∈
V |
39 | 35, 38 | inex 4106 |
. . . . 5
⊢ ( Ins4 SI3
Swap ∩ Ins2
Ins2 S ) ∈ V |
40 | | 1cex 4143 |
. . . . 5
⊢
1c ∈
V |
41 | 39, 40 | imaex 4748 |
. . . 4
⊢ (( Ins4 SI3
Swap ∩ Ins2
Ins2 S ) “
1c) ∈ V |
42 | 41, 40 | imaex 4748 |
. . 3
⊢ ((( Ins4 SI3
Swap ∩ Ins2
Ins2 S ) “
1c) “ 1c) ∈ V |
43 | 32, 42 | mptexlem 5811 |
. 2
⊢ ((V × V)
∩ ◡ ∼ (( Ins3 S ⊕ Ins2 ((( Ins4 SI3 Swap
∩ Ins2 Ins2 S ) “
1c) “ 1c)) “
1c)) ∈ V |
44 | 31, 43 | eqeltri 2423 |
1
⊢ Dom ∈
V |