Step | Hyp | Ref
| Expression |
1 | | df-domfn 5770 |
. . 3
⊢ Dom = (x ∈ V ↦ dom
x) |
2 | | elin 3219 |
. . . . . . . . 9
⊢ (〈{w}, 〈{z}, 〈{y}, x〉〉〉 ∈ ( Ins4 SI3 Swap
∩ Ins2 Ins2 S ) ↔ (〈{w}, 〈{z}, 〈{y}, x〉〉〉 ∈ Ins4 SI3 Swap
∧ 〈{w}, 〈{z}, 〈{y}, x〉〉〉 ∈ Ins2 Ins2 S )) |
3 | | vex 2862 |
. . . . . . . . . . . 12
⊢ x ∈
V |
4 | 3 | oqelins4 5794 |
. . . . . . . . . . 11
⊢ (〈{w}, 〈{z}, 〈{y}, x〉〉〉 ∈ Ins4 SI3 Swap
↔ 〈{w}, 〈{z}, {y}〉〉 ∈ SI3 Swap
) |
5 | | vex 2862 |
. . . . . . . . . . . . 13
⊢ w ∈
V |
6 | | vex 2862 |
. . . . . . . . . . . . 13
⊢ z ∈
V |
7 | | vex 2862 |
. . . . . . . . . . . . 13
⊢ y ∈
V |
8 | 5, 6, 7 | otsnelsi3 5805 |
. . . . . . . . . . . 12
⊢ (〈{w}, 〈{z}, {y}〉〉 ∈ SI3 Swap
↔ 〈w, 〈z, y〉〉 ∈ Swap
) |
9 | | df-br 4640 |
. . . . . . . . . . . 12
⊢ (w Swap 〈z, y〉 ↔ 〈w, 〈z, y〉〉 ∈ Swap ) |
10 | 6, 7 | brswap2 4860 |
. . . . . . . . . . . 12
⊢ (w Swap 〈z, y〉 ↔ w = 〈y, z〉) |
11 | 8, 9, 10 | 3bitr2i 264 |
. . . . . . . . . . 11
⊢ (〈{w}, 〈{z}, {y}〉〉 ∈ SI3 Swap
↔ w = 〈y, z〉) |
12 | 4, 11 | bitri 240 |
. . . . . . . . . 10
⊢ (〈{w}, 〈{z}, 〈{y}, x〉〉〉 ∈ Ins4 SI3 Swap
↔ w = 〈y, z〉) |
13 | | snex 4111 |
. . . . . . . . . . . 12
⊢ {z} ∈
V |
14 | 13 | otelins2 5791 |
. . . . . . . . . . 11
⊢ (〈{w}, 〈{z}, 〈{y}, x〉〉〉 ∈ Ins2 Ins2 S ↔ 〈{w}, 〈{y}, x〉〉 ∈ Ins2 S ) |
15 | | snex 4111 |
. . . . . . . . . . . . 13
⊢ {y} ∈
V |
16 | 15 | otelins2 5791 |
. . . . . . . . . . . 12
⊢ (〈{w}, 〈{y}, x〉〉 ∈ Ins2 S ↔ 〈{w}, x〉 ∈ S
) |
17 | 5, 3 | opelssetsn 4760 |
. . . . . . . . . . . 12
⊢ (〈{w}, x〉 ∈ S ↔ w ∈ x) |
18 | 16, 17 | bitri 240 |
. . . . . . . . . . 11
⊢ (〈{w}, 〈{y}, x〉〉 ∈ Ins2 S ↔ w ∈ x) |
19 | 14, 18 | bitri 240 |
. . . . . . . . . 10
⊢ (〈{w}, 〈{z}, 〈{y}, x〉〉〉 ∈ Ins2 Ins2 S ↔ w ∈ x) |
20 | 12, 19 | anbi12i 678 |
. . . . . . . . 9
⊢ ((〈{w}, 〈{z}, 〈{y}, x〉〉〉 ∈ Ins4 SI3 Swap
∧ 〈{w}, 〈{z}, 〈{y}, x〉〉〉 ∈ Ins2 Ins2 S ) ↔ (w = 〈y, z〉 ∧ w ∈ x)) |
21 | 2, 20 | bitri 240 |
. . . . . . . 8
⊢ (〈{w}, 〈{z}, 〈{y}, x〉〉〉 ∈ ( Ins4 SI3 Swap
∩ Ins2 Ins2 S ) ↔ (w = 〈y, z〉 ∧ w ∈ x)) |
22 | 21 | exbii 1582 |
. . . . . . 7
⊢ (∃w〈{w}, 〈{z}, 〈{y}, x〉〉〉 ∈ ( Ins4 SI3 Swap
∩ Ins2 Ins2 S ) ↔ ∃w(w = 〈y, z〉 ∧ w ∈ x)) |
23 | | elima1c 4947 |
. . . . . . 7
⊢ (〈{z}, 〈{y}, x〉〉 ∈ (( Ins4 SI3
Swap ∩ Ins2
Ins2 S ) “
1c) ↔ ∃w〈{w}, 〈{z}, 〈{y}, x〉〉〉 ∈ ( Ins4 SI3
Swap ∩ Ins2
Ins2 S
)) |
24 | | df-clel 2349 |
. . . . . . 7
⊢ (〈y, z〉 ∈ x ↔
∃w(w = 〈y, z〉 ∧ w ∈ x)) |
25 | 22, 23, 24 | 3bitr4i 268 |
. . . . . 6
⊢ (〈{z}, 〈{y}, x〉〉 ∈ (( Ins4 SI3
Swap ∩ Ins2
Ins2 S ) “
1c) ↔ 〈y, z〉 ∈ x) |
26 | 25 | exbii 1582 |
. . . . 5
⊢ (∃z〈{z}, 〈{y}, x〉〉 ∈ (( Ins4 SI3
Swap ∩ Ins2
Ins2 S ) “
1c) ↔ ∃z〈y, z〉 ∈ x) |
27 | | elima1c 4947 |
. . . . 5
⊢ (〈{y}, x〉 ∈ ((( Ins4 SI3 Swap
∩ Ins2 Ins2 S ) “
1c) “ 1c) ↔ ∃z〈{z}, 〈{y}, x〉〉 ∈ (( Ins4 SI3
Swap ∩ Ins2
Ins2 S ) “
1c)) |
28 | | eldm2 4899 |
. . . . 5
⊢ (y ∈ dom x ↔ ∃z〈y, z〉 ∈ x) |
29 | 26, 27, 28 | 3bitr4i 268 |
. . . 4
⊢ (〈{y}, x〉 ∈ ((( Ins4 SI3 Swap
∩ Ins2 Ins2 S ) “
1c) “ 1c) ↔ y ∈ dom x) |
30 | 29 | releqmpt 5808 |
. . 3
⊢ ((V × V)
∩ ◡ ∼ (( Ins3 S ⊕ Ins2 ((( Ins4 SI3 Swap
∩ Ins2 Ins2 S ) “
1c) “ 1c)) “
1c)) = (x ∈ V ↦ dom
x) |
31 | 1, 30 | eqtr4i 2376 |
. 2
⊢ Dom = ((V × V) ∩ ◡ ∼ (( Ins3
S ⊕ Ins2 (((
Ins4 SI3 Swap
∩ Ins2 Ins2 S ) “
1c) “ 1c)) “
1c)) |
32 | | vvex 4109 |
. . 3
⊢ V ∈ V |
33 | | swapex 4742 |
. . . . . . . 8
⊢ Swap ∈
V |
34 | 33 | si3ex 5806 |
. . . . . . 7
⊢ SI3 Swap
∈ V |
35 | 34 | ins4ex 5799 |
. . . . . 6
⊢ Ins4 SI3
Swap ∈
V |
36 | | ssetex 4744 |
. . . . . . . 8
⊢ S ∈
V |
37 | 36 | ins2ex 5797 |
. . . . . . 7
⊢ Ins2 S ∈ V |
38 | 37 | ins2ex 5797 |
. . . . . 6
⊢ Ins2 Ins2 S ∈
V |
39 | 35, 38 | inex 4105 |
. . . . 5
⊢ ( Ins4 SI3
Swap ∩ Ins2
Ins2 S ) ∈ V |
40 | | 1cex 4142 |
. . . . 5
⊢
1c ∈
V |
41 | 39, 40 | imaex 4747 |
. . . 4
⊢ (( Ins4 SI3
Swap ∩ Ins2
Ins2 S ) “
1c) ∈ V |
42 | 41, 40 | imaex 4747 |
. . 3
⊢ ((( Ins4 SI3
Swap ∩ Ins2
Ins2 S ) “
1c) “ 1c) ∈ V |
43 | 32, 42 | mptexlem 5810 |
. 2
⊢ ((V × V)
∩ ◡ ∼ (( Ins3 S ⊕ Ins2 ((( Ins4 SI3 Swap
∩ Ins2 Ins2 S ) “
1c) “ 1c)) “
1c)) ∈ V |
44 | 31, 43 | eqeltri 2423 |
1
⊢ Dom ∈
V |