| Step | Hyp | Ref
| Expression |
| 1 | | df-domfn 5771 |
. . 3
⊢ Dom = (x ∈ V ↦ dom
x) |
| 2 | | elin 3220 |
. . . . . . . . 9
⊢ (〈{w}, 〈{z}, 〈{y}, x〉〉〉 ∈ ( Ins4 SI3 Swap
∩ Ins2 Ins2 S ) ↔ (〈{w}, 〈{z}, 〈{y}, x〉〉〉 ∈ Ins4 SI3 Swap
∧ 〈{w}, 〈{z}, 〈{y}, x〉〉〉 ∈ Ins2 Ins2 S )) |
| 3 | | vex 2863 |
. . . . . . . . . . . 12
⊢ x ∈
V |
| 4 | 3 | oqelins4 5795 |
. . . . . . . . . . 11
⊢ (〈{w}, 〈{z}, 〈{y}, x〉〉〉 ∈ Ins4 SI3 Swap
↔ 〈{w}, 〈{z}, {y}〉〉 ∈ SI3 Swap
) |
| 5 | | vex 2863 |
. . . . . . . . . . . . 13
⊢ w ∈
V |
| 6 | | vex 2863 |
. . . . . . . . . . . . 13
⊢ z ∈
V |
| 7 | | vex 2863 |
. . . . . . . . . . . . 13
⊢ y ∈
V |
| 8 | 5, 6, 7 | otsnelsi3 5806 |
. . . . . . . . . . . 12
⊢ (〈{w}, 〈{z}, {y}〉〉 ∈ SI3 Swap
↔ 〈w, 〈z, y〉〉 ∈ Swap
) |
| 9 | | df-br 4641 |
. . . . . . . . . . . 12
⊢ (w Swap 〈z, y〉 ↔ 〈w, 〈z, y〉〉 ∈ Swap ) |
| 10 | 6, 7 | brswap2 4861 |
. . . . . . . . . . . 12
⊢ (w Swap 〈z, y〉 ↔ w = 〈y, z〉) |
| 11 | 8, 9, 10 | 3bitr2i 264 |
. . . . . . . . . . 11
⊢ (〈{w}, 〈{z}, {y}〉〉 ∈ SI3 Swap
↔ w = 〈y, z〉) |
| 12 | 4, 11 | bitri 240 |
. . . . . . . . . 10
⊢ (〈{w}, 〈{z}, 〈{y}, x〉〉〉 ∈ Ins4 SI3 Swap
↔ w = 〈y, z〉) |
| 13 | | snex 4112 |
. . . . . . . . . . . 12
⊢ {z} ∈
V |
| 14 | 13 | otelins2 5792 |
. . . . . . . . . . 11
⊢ (〈{w}, 〈{z}, 〈{y}, x〉〉〉 ∈ Ins2 Ins2 S ↔ 〈{w}, 〈{y}, x〉〉 ∈ Ins2 S ) |
| 15 | | snex 4112 |
. . . . . . . . . . . . 13
⊢ {y} ∈
V |
| 16 | 15 | otelins2 5792 |
. . . . . . . . . . . 12
⊢ (〈{w}, 〈{y}, x〉〉 ∈ Ins2 S ↔ 〈{w}, x〉 ∈ S
) |
| 17 | 5, 3 | opelssetsn 4761 |
. . . . . . . . . . . 12
⊢ (〈{w}, x〉 ∈ S ↔ w ∈ x) |
| 18 | 16, 17 | bitri 240 |
. . . . . . . . . . 11
⊢ (〈{w}, 〈{y}, x〉〉 ∈ Ins2 S ↔ w ∈ x) |
| 19 | 14, 18 | bitri 240 |
. . . . . . . . . 10
⊢ (〈{w}, 〈{z}, 〈{y}, x〉〉〉 ∈ Ins2 Ins2 S ↔ w ∈ x) |
| 20 | 12, 19 | anbi12i 678 |
. . . . . . . . 9
⊢ ((〈{w}, 〈{z}, 〈{y}, x〉〉〉 ∈ Ins4 SI3 Swap
∧ 〈{w}, 〈{z}, 〈{y}, x〉〉〉 ∈ Ins2 Ins2 S ) ↔ (w = 〈y, z〉 ∧ w ∈ x)) |
| 21 | 2, 20 | bitri 240 |
. . . . . . . 8
⊢ (〈{w}, 〈{z}, 〈{y}, x〉〉〉 ∈ ( Ins4 SI3 Swap
∩ Ins2 Ins2 S ) ↔ (w = 〈y, z〉 ∧ w ∈ x)) |
| 22 | 21 | exbii 1582 |
. . . . . . 7
⊢ (∃w〈{w}, 〈{z}, 〈{y}, x〉〉〉 ∈ ( Ins4 SI3 Swap
∩ Ins2 Ins2 S ) ↔ ∃w(w = 〈y, z〉 ∧ w ∈ x)) |
| 23 | | elima1c 4948 |
. . . . . . 7
⊢ (〈{z}, 〈{y}, x〉〉 ∈ (( Ins4 SI3
Swap ∩ Ins2
Ins2 S ) “
1c) ↔ ∃w〈{w}, 〈{z}, 〈{y}, x〉〉〉 ∈ ( Ins4 SI3
Swap ∩ Ins2
Ins2 S
)) |
| 24 | | df-clel 2349 |
. . . . . . 7
⊢ (〈y, z〉 ∈ x ↔
∃w(w = 〈y, z〉 ∧ w ∈ x)) |
| 25 | 22, 23, 24 | 3bitr4i 268 |
. . . . . 6
⊢ (〈{z}, 〈{y}, x〉〉 ∈ (( Ins4 SI3
Swap ∩ Ins2
Ins2 S ) “
1c) ↔ 〈y, z〉 ∈ x) |
| 26 | 25 | exbii 1582 |
. . . . 5
⊢ (∃z〈{z}, 〈{y}, x〉〉 ∈ (( Ins4 SI3
Swap ∩ Ins2
Ins2 S ) “
1c) ↔ ∃z〈y, z〉 ∈ x) |
| 27 | | elima1c 4948 |
. . . . 5
⊢ (〈{y}, x〉 ∈ ((( Ins4 SI3 Swap
∩ Ins2 Ins2 S ) “
1c) “ 1c) ↔ ∃z〈{z}, 〈{y}, x〉〉 ∈ (( Ins4 SI3
Swap ∩ Ins2
Ins2 S ) “
1c)) |
| 28 | | eldm2 4900 |
. . . . 5
⊢ (y ∈ dom x ↔ ∃z〈y, z〉 ∈ x) |
| 29 | 26, 27, 28 | 3bitr4i 268 |
. . . 4
⊢ (〈{y}, x〉 ∈ ((( Ins4 SI3 Swap
∩ Ins2 Ins2 S ) “
1c) “ 1c) ↔ y ∈ dom x) |
| 30 | 29 | releqmpt 5809 |
. . 3
⊢ ((V × V)
∩ ◡ ∼ (( Ins3 S ⊕ Ins2 ((( Ins4 SI3 Swap
∩ Ins2 Ins2 S ) “
1c) “ 1c)) “
1c)) = (x ∈ V ↦ dom
x) |
| 31 | 1, 30 | eqtr4i 2376 |
. 2
⊢ Dom = ((V × V) ∩ ◡ ∼ (( Ins3
S ⊕ Ins2 (((
Ins4 SI3 Swap
∩ Ins2 Ins2 S ) “
1c) “ 1c)) “
1c)) |
| 32 | | vvex 4110 |
. . 3
⊢ V ∈ V |
| 33 | | swapex 4743 |
. . . . . . . 8
⊢ Swap ∈
V |
| 34 | 33 | si3ex 5807 |
. . . . . . 7
⊢ SI3 Swap
∈ V |
| 35 | 34 | ins4ex 5800 |
. . . . . 6
⊢ Ins4 SI3
Swap ∈
V |
| 36 | | ssetex 4745 |
. . . . . . . 8
⊢ S ∈
V |
| 37 | 36 | ins2ex 5798 |
. . . . . . 7
⊢ Ins2 S ∈ V |
| 38 | 37 | ins2ex 5798 |
. . . . . 6
⊢ Ins2 Ins2 S ∈
V |
| 39 | 35, 38 | inex 4106 |
. . . . 5
⊢ ( Ins4 SI3
Swap ∩ Ins2
Ins2 S ) ∈ V |
| 40 | | 1cex 4143 |
. . . . 5
⊢
1c ∈
V |
| 41 | 39, 40 | imaex 4748 |
. . . 4
⊢ (( Ins4 SI3
Swap ∩ Ins2
Ins2 S ) “
1c) ∈ V |
| 42 | 41, 40 | imaex 4748 |
. . 3
⊢ ((( Ins4 SI3
Swap ∩ Ins2
Ins2 S ) “
1c) “ 1c) ∈ V |
| 43 | 32, 42 | mptexlem 5811 |
. 2
⊢ ((V × V)
∩ ◡ ∼ (( Ins3 S ⊕ Ins2 ((( Ins4 SI3 Swap
∩ Ins2 Ins2 S ) “
1c) “ 1c)) “
1c)) ∈ V |
| 44 | 31, 43 | eqeltri 2423 |
1
⊢ Dom ∈
V |