New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > mptexlem | GIF version |
Description: Lemma for the existence of a mapping. (Contributed by SF, 9-Mar-2015.) |
Ref | Expression |
---|---|
mptexlem.1 | ⊢ A ∈ V |
mptexlem.2 | ⊢ R ∈ V |
Ref | Expression |
---|---|
mptexlem | ⊢ ((A × V) ∩ ◡ ∼ (( Ins3 S ⊕ Ins2 R) “ 1c)) ∈ V |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mptexlem.1 | . . 3 ⊢ A ∈ V | |
2 | vvex 4110 | . . 3 ⊢ V ∈ V | |
3 | 1, 2 | xpex 5116 | . 2 ⊢ (A × V) ∈ V |
4 | ssetex 4745 | . . . . . . 7 ⊢ S ∈ V | |
5 | 4 | ins3ex 5799 | . . . . . 6 ⊢ Ins3 S ∈ V |
6 | mptexlem.2 | . . . . . . 7 ⊢ R ∈ V | |
7 | 6 | ins2ex 5798 | . . . . . 6 ⊢ Ins2 R ∈ V |
8 | 5, 7 | symdifex 4109 | . . . . 5 ⊢ ( Ins3 S ⊕ Ins2 R) ∈ V |
9 | 1cex 4143 | . . . . 5 ⊢ 1c ∈ V | |
10 | 8, 9 | imaex 4748 | . . . 4 ⊢ (( Ins3 S ⊕ Ins2 R) “ 1c) ∈ V |
11 | 10 | complex 4105 | . . 3 ⊢ ∼ (( Ins3 S ⊕ Ins2 R) “ 1c) ∈ V |
12 | 11 | cnvex 5103 | . 2 ⊢ ◡ ∼ (( Ins3 S ⊕ Ins2 R) “ 1c) ∈ V |
13 | 3, 12 | inex 4106 | 1 ⊢ ((A × V) ∩ ◡ ∼ (( Ins3 S ⊕ Ins2 R) “ 1c)) ∈ V |
Colors of variables: wff setvar class |
Syntax hints: ∈ wcel 1710 Vcvv 2860 ∼ ccompl 3206 ∩ cin 3209 ⊕ csymdif 3210 1cc1c 4135 S csset 4720 “ cima 4723 × cxp 4771 ◡ccnv 4772 Ins2 cins2 5750 Ins3 cins3 5752 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-13 1712 ax-14 1714 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 ax-ext 2334 ax-nin 4079 ax-xp 4080 ax-cnv 4081 ax-1c 4082 ax-sset 4083 ax-si 4084 ax-ins2 4085 ax-ins3 4086 ax-typlower 4087 ax-sn 4088 |
This theorem depends on definitions: df-bi 177 df-or 359 df-an 360 df-3or 935 df-3an 936 df-nan 1288 df-tru 1319 df-ex 1542 df-nf 1545 df-sb 1649 df-eu 2208 df-mo 2209 df-clab 2340 df-cleq 2346 df-clel 2349 df-nfc 2479 df-ne 2519 df-ral 2620 df-rex 2621 df-reu 2622 df-rmo 2623 df-rab 2624 df-v 2862 df-sbc 3048 df-nin 3212 df-compl 3213 df-in 3214 df-un 3215 df-dif 3216 df-symdif 3217 df-ss 3260 df-pss 3262 df-nul 3552 df-if 3664 df-pw 3725 df-sn 3742 df-pr 3743 df-uni 3893 df-int 3928 df-opk 4059 df-1c 4137 df-pw1 4138 df-uni1 4139 df-xpk 4186 df-cnvk 4187 df-ins2k 4188 df-ins3k 4189 df-imak 4190 df-cok 4191 df-p6 4192 df-sik 4193 df-ssetk 4194 df-imagek 4195 df-idk 4196 df-iota 4340 df-0c 4378 df-addc 4379 df-nnc 4380 df-fin 4381 df-lefin 4441 df-ltfin 4442 df-ncfin 4443 df-tfin 4444 df-evenfin 4445 df-oddfin 4446 df-sfin 4447 df-spfin 4448 df-phi 4566 df-op 4567 df-proj1 4568 df-proj2 4569 df-opab 4624 df-br 4641 df-1st 4724 df-swap 4725 df-sset 4726 df-co 4727 df-ima 4728 df-xp 4785 df-cnv 4786 df-2nd 4798 df-txp 5737 df-ins2 5751 df-ins3 5753 |
This theorem is referenced by: pw1fnex 5853 domfnex 5871 ranfnex 5872 enprmaplem1 6077 enprmaplem4 6080 tcfnex 6245 |
Copyright terms: Public domain | W3C validator |