New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > releqmpt2 | Unicode version |
Description: Equality condition for a mapping operation. (Contributed by SF, 13-Feb-2015.) |
Ref | Expression |
---|---|
releqmpt2.1 |
Ref | Expression |
---|---|
releqmpt2 | Ins2 S Ins3 1c |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eldif 3222 | . . . 4 Ins2 S Ins3 1c Ins2 S Ins3 1c | |
2 | vex 2863 | . . . . . . 7 | |
3 | opelxp 4812 | . . . . . . 7 | |
4 | 2, 3 | mpbiran2 885 | . . . . . 6 |
5 | opelxp 4812 | . . . . . 6 | |
6 | 4, 5 | bitri 240 | . . . . 5 |
7 | dfcleq 2347 | . . . . . 6 | |
8 | elima1c 4948 | . . . . . . . 8 Ins2 S Ins3 1c Ins2 S Ins3 | |
9 | elsymdif 3224 | . . . . . . . . . 10 Ins2 S Ins3 Ins2 S Ins3 | |
10 | vex 2863 | . . . . . . . . . . . . . 14 | |
11 | vex 2863 | . . . . . . . . . . . . . 14 | |
12 | 10, 11 | opex 4589 | . . . . . . . . . . . . 13 |
13 | 12 | otelins2 5792 | . . . . . . . . . . . 12 Ins2 S S |
14 | vex 2863 | . . . . . . . . . . . . 13 | |
15 | 14, 2 | opelssetsn 4761 | . . . . . . . . . . . 12 S |
16 | 13, 15 | bitri 240 | . . . . . . . . . . 11 Ins2 S |
17 | 2 | otelins3 5793 | . . . . . . . . . . . 12 Ins3 |
18 | releqmpt2.1 | . . . . . . . . . . . 12 | |
19 | 17, 18 | bitri 240 | . . . . . . . . . . 11 Ins3 |
20 | 16, 19 | bibi12i 306 | . . . . . . . . . 10 Ins2 S Ins3 |
21 | 9, 20 | xchbinx 301 | . . . . . . . . 9 Ins2 S Ins3 |
22 | 21 | exbii 1582 | . . . . . . . 8 Ins2 S Ins3 |
23 | exnal 1574 | . . . . . . . 8 | |
24 | 8, 22, 23 | 3bitri 262 | . . . . . . 7 Ins2 S Ins3 1c |
25 | 24 | con2bii 322 | . . . . . 6 Ins2 S Ins3 1c |
26 | 7, 25 | bitr2i 241 | . . . . 5 Ins2 S Ins3 1c |
27 | 6, 26 | anbi12i 678 | . . . 4 Ins2 S Ins3 1c |
28 | 1, 27 | bitri 240 | . . 3 Ins2 S Ins3 1c |
29 | 28 | oprabbi2i 5648 | . 2 Ins2 S Ins3 1c |
30 | df-mpt2 5655 | . 2 | |
31 | 29, 30 | eqtr4i 2376 | 1 Ins2 S Ins3 1c |
Colors of variables: wff setvar class |
Syntax hints: wn 3 wb 176 wa 358 wal 1540 wex 1541 wceq 1642 wcel 1710 cvv 2860 cdif 3207 csymdif 3210 csn 3738 1cc1c 4135 cop 4562 S csset 4720 cima 4723 cxp 4771 coprab 5528 cmpt2 5654 Ins2 cins2 5750 Ins3 cins3 5752 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-13 1712 ax-14 1714 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 ax-ext 2334 ax-nin 4079 ax-xp 4080 ax-cnv 4081 ax-1c 4082 ax-sset 4083 ax-si 4084 ax-ins2 4085 ax-ins3 4086 ax-typlower 4087 ax-sn 4088 |
This theorem depends on definitions: df-bi 177 df-or 359 df-an 360 df-3or 935 df-3an 936 df-nan 1288 df-tru 1319 df-ex 1542 df-nf 1545 df-sb 1649 df-eu 2208 df-mo 2209 df-clab 2340 df-cleq 2346 df-clel 2349 df-nfc 2479 df-ne 2519 df-ral 2620 df-rex 2621 df-reu 2622 df-rmo 2623 df-rab 2624 df-v 2862 df-sbc 3048 df-nin 3212 df-compl 3213 df-in 3214 df-un 3215 df-dif 3216 df-symdif 3217 df-ss 3260 df-pss 3262 df-nul 3552 df-if 3664 df-pw 3725 df-sn 3742 df-pr 3743 df-uni 3893 df-int 3928 df-opk 4059 df-1c 4137 df-pw1 4138 df-uni1 4139 df-xpk 4186 df-cnvk 4187 df-ins2k 4188 df-ins3k 4189 df-imak 4190 df-cok 4191 df-p6 4192 df-sik 4193 df-ssetk 4194 df-imagek 4195 df-idk 4196 df-iota 4340 df-0c 4378 df-addc 4379 df-nnc 4380 df-fin 4381 df-lefin 4441 df-ltfin 4442 df-ncfin 4443 df-tfin 4444 df-evenfin 4445 df-oddfin 4446 df-sfin 4447 df-spfin 4448 df-phi 4566 df-op 4567 df-proj1 4568 df-proj2 4569 df-opab 4624 df-br 4641 df-1st 4724 df-sset 4726 df-co 4727 df-ima 4728 df-xp 4785 df-cnv 4786 df-2nd 4798 df-oprab 5529 df-mpt2 5655 df-txp 5737 df-ins2 5751 df-ins3 5753 |
This theorem is referenced by: cupex 5817 composeex 5821 addcfnex 5825 crossex 5851 mucex 6134 ceex 6175 |
Copyright terms: Public domain | W3C validator |