NFE Home New Foundations Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  NFE Home  >  Th. List  >  qsexg Unicode version

Theorem qsexg 5983
Description: A quotient set exists. (Contributed by FL, 19-May-2007.)
Assertion
Ref Expression
qsexg

Proof of Theorem qsexg
Dummy variables are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-qs 5952 . . 3
2 elimapw1 4945 . . . . 5 Ins2 S Ins3 SI 1c1 Ins2 S Ins3 SI 1c
3 elima1c 4948 . . . . . . . . . 10 Ins2 S Ins3 SI 1c Ins2 S Ins3 SI
4 elsymdif 3224 . . . . . . . . . . . 12 Ins2 S Ins3 SI Ins2 S Ins3 SI
5 snex 4112 . . . . . . . . . . . . . . . 16
65otelins2 5792 . . . . . . . . . . . . . . 15 Ins2 S S
7 vex 2863 . . . . . . . . . . . . . . . 16
8 vex 2863 . . . . . . . . . . . . . . . 16
97, 8opelssetsn 4761 . . . . . . . . . . . . . . 15 S
106, 9bitri 240 . . . . . . . . . . . . . 14 Ins2 S
118otelins3 5793 . . . . . . . . . . . . . . 15 Ins3 SI SI
12 df-br 4641 . . . . . . . . . . . . . . . . 17
13 brcnv 4893 . . . . . . . . . . . . . . . . 17
1412, 13bitr3i 242 . . . . . . . . . . . . . . . 16
15 vex 2863 . . . . . . . . . . . . . . . . 17
167, 15opsnelsi 5775 . . . . . . . . . . . . . . . 16 SI
17 elec 5965 . . . . . . . . . . . . . . . 16
1814, 16, 173bitr4i 268 . . . . . . . . . . . . . . 15 SI
1911, 18bitri 240 . . . . . . . . . . . . . 14 Ins3 SI
2010, 19bibi12i 306 . . . . . . . . . . . . 13 Ins2 S Ins3 SI
2120notbii 287 . . . . . . . . . . . 12 Ins2 S Ins3 SI
224, 21bitri 240 . . . . . . . . . . 11 Ins2 S Ins3 SI
2322exbii 1582 . . . . . . . . . 10 Ins2 S Ins3 SI
243, 23bitri 240 . . . . . . . . 9 Ins2 S Ins3 SI 1c
2524notbii 287 . . . . . . . 8 Ins2 S Ins3 SI 1c
265, 8opex 4589 . . . . . . . . 9
2726elcompl 3226 . . . . . . . 8 Ins2 S Ins3 SI 1c Ins2 S Ins3 SI 1c
28 alex 1572 . . . . . . . 8
2925, 27, 283bitr4i 268 . . . . . . 7 Ins2 S Ins3 SI 1c
30 dfcleq 2347 . . . . . . 7
3129, 30bitr4i 243 . . . . . 6 Ins2 S Ins3 SI 1c
3231rexbii 2640 . . . . 5 Ins2 S Ins3 SI 1c
332, 32bitri 240 . . . 4 Ins2 S Ins3 SI 1c1
3433abbi2i 2465 . . 3 Ins2 S Ins3 SI 1c1
351, 34eqtr4i 2376 . 2 Ins2 S Ins3 SI 1c1
36 ssetex 4745 . . . . . . 7 S
3736ins2ex 5798 . . . . . 6 Ins2 S
38 cnvexg 5102 . . . . . . 7
39 siexg 4753 . . . . . . 7 SI
40 ins3exg 5797 . . . . . . 7 SI Ins3 SI
4138, 39, 403syl 18 . . . . . 6 Ins3 SI
42 symdifexg 4104 . . . . . 6 Ins2 S Ins3 SI Ins2 S Ins3 SI
4337, 41, 42sylancr 644 . . . . 5 Ins2 S Ins3 SI
44 1cex 4143 . . . . 5 1c
45 imaexg 4747 . . . . 5 Ins2 S Ins3 SI 1c Ins2 S Ins3 SI 1c
4643, 44, 45sylancl 643 . . . 4 Ins2 S Ins3 SI 1c
47 complexg 4100 . . . 4 Ins2 S Ins3 SI 1c Ins2 S Ins3 SI 1c
4846, 47syl 15 . . 3 Ins2 S Ins3 SI 1c
49 pw1exg 4303 . . 3 1
50 imaexg 4747 . . 3 Ins2 S Ins3 SI 1c 1 Ins2 S Ins3 SI 1c1
5148, 49, 50syl2an 463 . 2 Ins2 S Ins3 SI 1c1
5235, 51syl5eqel 2437 1
Colors of variables: wff setvar class
Syntax hints:   wn 3   wi 4   wb 176   wa 358  wal 1540  wex 1541   wceq 1642   wcel 1710  cab 2339  wrex 2616  cvv 2860   ∼ ccompl 3206   csymdif 3210  csn 3738  1cc1c 4135  1 cpw1 4136  cop 4562   class class class wbr 4640   S csset 4720   SI csi 4721  cima 4723  ccnv 4772   Ins2 cins2 5750   Ins3 cins3 5752  cec 5946  cqs 5947
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1546  ax-5 1557  ax-17 1616  ax-9 1654  ax-8 1675  ax-13 1712  ax-14 1714  ax-6 1729  ax-7 1734  ax-11 1746  ax-12 1925  ax-ext 2334  ax-nin 4079  ax-xp 4080  ax-cnv 4081  ax-1c 4082  ax-sset 4083  ax-si 4084  ax-ins2 4085  ax-ins3 4086  ax-typlower 4087  ax-sn 4088
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-nan 1288  df-tru 1319  df-ex 1542  df-nf 1545  df-sb 1649  df-eu 2208  df-mo 2209  df-clab 2340  df-cleq 2346  df-clel 2349  df-nfc 2479  df-ne 2519  df-ral 2620  df-rex 2621  df-reu 2622  df-rmo 2623  df-rab 2624  df-v 2862  df-sbc 3048  df-nin 3212  df-compl 3213  df-in 3214  df-un 3215  df-dif 3216  df-symdif 3217  df-ss 3260  df-pss 3262  df-nul 3552  df-if 3664  df-pw 3725  df-sn 3742  df-pr 3743  df-uni 3893  df-int 3928  df-opk 4059  df-1c 4137  df-pw1 4138  df-uni1 4139  df-xpk 4186  df-cnvk 4187  df-ins2k 4188  df-ins3k 4189  df-imak 4190  df-cok 4191  df-p6 4192  df-sik 4193  df-ssetk 4194  df-imagek 4195  df-idk 4196  df-iota 4340  df-0c 4378  df-addc 4379  df-nnc 4380  df-fin 4381  df-lefin 4441  df-ltfin 4442  df-ncfin 4443  df-tfin 4444  df-evenfin 4445  df-oddfin 4446  df-sfin 4447  df-spfin 4448  df-phi 4566  df-op 4567  df-proj1 4568  df-proj2 4569  df-opab 4624  df-br 4641  df-1st 4724  df-swap 4725  df-sset 4726  df-co 4727  df-ima 4728  df-si 4729  df-xp 4785  df-cnv 4786  df-rn 4787  df-dm 4788  df-res 4789  df-2nd 4798  df-txp 5737  df-ins2 5751  df-ins3 5753  df-ec 5948  df-qs 5952
This theorem is referenced by:  qsex  5984
  Copyright terms: Public domain W3C validator