Step | Hyp | Ref
| Expression |
1 | | brlecg 6113 |
. . . 4
⊢ ((A ∈ NC ∧ B ∈ NC ) → (A
≤c B ↔ ∃g ∈ A ∃b ∈ B g ⊆ b)) |
2 | | brlecg 6113 |
. . . . 5
⊢ ((B ∈ NC ∧ A ∈ NC ) → (B
≤c A ↔ ∃d ∈ B ∃a ∈ A d ⊆ a)) |
3 | 2 | ancoms 439 |
. . . 4
⊢ ((A ∈ NC ∧ B ∈ NC ) → (B
≤c A ↔ ∃d ∈ B ∃a ∈ A d ⊆ a)) |
4 | 1, 3 | anbi12d 691 |
. . 3
⊢ ((A ∈ NC ∧ B ∈ NC ) → ((A
≤c B ∧ B
≤c A) ↔ (∃g ∈ A ∃b ∈ B g ⊆ b ∧ ∃d ∈ B ∃a ∈ A d ⊆ a))) |
5 | | reeanv 2779 |
. . . . 5
⊢ (∃b ∈ B ∃a ∈ A (g ⊆ b ∧ d ⊆ a) ↔ (∃b ∈ B g ⊆ b ∧ ∃a ∈ A d ⊆ a)) |
6 | 5 | 2rexbii 2642 |
. . . 4
⊢ (∃g ∈ A ∃d ∈ B ∃b ∈ B ∃a ∈ A (g ⊆ b ∧ d ⊆ a) ↔ ∃g ∈ A ∃d ∈ B (∃b ∈ B g ⊆ b ∧ ∃a ∈ A d ⊆ a)) |
7 | | reeanv 2779 |
. . . 4
⊢ (∃g ∈ A ∃d ∈ B (∃b ∈ B g ⊆ b ∧ ∃a ∈ A d ⊆ a) ↔ (∃g ∈ A ∃b ∈ B g ⊆ b ∧ ∃d ∈ B ∃a ∈ A d ⊆ a)) |
8 | 6, 7 | bitri 240 |
. . 3
⊢ (∃g ∈ A ∃d ∈ B ∃b ∈ B ∃a ∈ A (g ⊆ b ∧ d ⊆ a) ↔ (∃g ∈ A ∃b ∈ B g ⊆ b ∧ ∃d ∈ B ∃a ∈ A d ⊆ a)) |
9 | 4, 8 | syl6bbr 254 |
. 2
⊢ ((A ∈ NC ∧ B ∈ NC ) → ((A
≤c B ∧ B
≤c A) ↔ ∃g ∈ A ∃d ∈ B ∃b ∈ B ∃a ∈ A (g ⊆ b ∧ d ⊆ a))) |
10 | | ncseqnc 6129 |
. . . . . 6
⊢ (A ∈ NC → (A = Nc g ↔ g ∈ A)) |
11 | | ncseqnc 6129 |
. . . . . 6
⊢ (B ∈ NC → (B = Nc d ↔ d ∈ B)) |
12 | 10, 11 | bi2anan9 843 |
. . . . 5
⊢ ((A ∈ NC ∧ B ∈ NC ) → ((A =
Nc g ∧ B = Nc d) ↔
(g ∈
A ∧
d ∈
B))) |
13 | 12 | biimpar 471 |
. . . 4
⊢ (((A ∈ NC ∧ B ∈ NC ) ∧ (g ∈ A ∧ d ∈ B)) → (A =
Nc g ∧ B = Nc d)) |
14 | | simplr 731 |
. . . . . . . . . . 11
⊢ (((b ≈ d
∧ a
≈ g) ∧ (g ⊆ b ∧ d ⊆ a)) →
a ≈ g) |
15 | | ensym 6038 |
. . . . . . . . . . 11
⊢ (a ≈ g
↔ g ≈ a) |
16 | 14, 15 | sylib 188 |
. . . . . . . . . 10
⊢ (((b ≈ d
∧ a
≈ g) ∧ (g ⊆ b ∧ d ⊆ a)) →
g ≈ a) |
17 | | simprl 732 |
. . . . . . . . . . 11
⊢ (((b ≈ d
∧ a
≈ g) ∧ (g ⊆ b ∧ d ⊆ a)) →
g ⊆
b) |
18 | | simpll 730 |
. . . . . . . . . . 11
⊢ (((b ≈ d
∧ a
≈ g) ∧ (g ⊆ b ∧ d ⊆ a)) →
b ≈ d) |
19 | | simprr 733 |
. . . . . . . . . . 11
⊢ (((b ≈ d
∧ a
≈ g) ∧ (g ⊆ b ∧ d ⊆ a)) →
d ⊆
a) |
20 | | sbthlem3 6206 |
. . . . . . . . . . 11
⊢ (((a ≈ g
∧ g ⊆ b) ∧ (b ≈
d ∧
d ⊆
a)) → a ≈ b) |
21 | 14, 17, 18, 19, 20 | syl22anc 1183 |
. . . . . . . . . 10
⊢ (((b ≈ d
∧ a
≈ g) ∧ (g ⊆ b ∧ d ⊆ a)) →
a ≈ b) |
22 | | entr 6039 |
. . . . . . . . . 10
⊢ ((g ≈ a
∧ a
≈ b) → g ≈ b) |
23 | 16, 21, 22 | syl2anc 642 |
. . . . . . . . 9
⊢ (((b ≈ d
∧ a
≈ g) ∧ (g ⊆ b ∧ d ⊆ a)) →
g ≈ b) |
24 | | entr 6039 |
. . . . . . . . 9
⊢ ((g ≈ b
∧ b
≈ d) → g ≈ d) |
25 | 23, 18, 24 | syl2anc 642 |
. . . . . . . 8
⊢ (((b ≈ d
∧ a
≈ g) ∧ (g ⊆ b ∧ d ⊆ a)) →
g ≈ d) |
26 | 25 | ex 423 |
. . . . . . 7
⊢ ((b ≈ d
∧ a
≈ g) → ((g ⊆ b ∧ d ⊆ a) → g
≈ d)) |
27 | | elnc 6126 |
. . . . . . . 8
⊢ (b ∈ Nc d ↔ b ≈ d) |
28 | | elnc 6126 |
. . . . . . . 8
⊢ (a ∈ Nc g ↔ a ≈ g) |
29 | 27, 28 | anbi12i 678 |
. . . . . . 7
⊢ ((b ∈ Nc d ∧ a ∈ Nc g) ↔ (b
≈ d ∧ a ≈
g)) |
30 | | vex 2863 |
. . . . . . . . 9
⊢ g ∈
V |
31 | 30 | eqnc 6128 |
. . . . . . . 8
⊢ ( Nc g = Nc d ↔ g ≈ d) |
32 | 31 | imbi2i 303 |
. . . . . . 7
⊢ (((g ⊆ b ∧ d ⊆ a) → Nc g = Nc d) ↔ ((g
⊆ b
∧ d ⊆ a) →
g ≈ d)) |
33 | 26, 29, 32 | 3imtr4i 257 |
. . . . . 6
⊢ ((b ∈ Nc d ∧ a ∈ Nc g) → ((g
⊆ b
∧ d ⊆ a) →
Nc g = Nc d)) |
34 | 33 | rexlimivv 2744 |
. . . . 5
⊢ (∃b ∈ Nc d∃a ∈ Nc g(g ⊆ b ∧ d ⊆ a) → Nc g = Nc d) |
35 | | rexeq 2809 |
. . . . . . 7
⊢ (B = Nc d → (∃b ∈ B ∃a ∈ A (g ⊆ b ∧ d ⊆ a) ↔ ∃b ∈ Nc d∃a ∈ A (g ⊆ b ∧ d ⊆ a))) |
36 | | rexeq 2809 |
. . . . . . . 8
⊢ (A = Nc g → (∃a ∈ A (g ⊆ b ∧ d ⊆ a) ↔ ∃a ∈ Nc g(g ⊆ b ∧ d ⊆ a))) |
37 | 36 | rexbidv 2636 |
. . . . . . 7
⊢ (A = Nc g → (∃b ∈ Nc d∃a ∈ A (g ⊆ b ∧ d ⊆ a) ↔
∃b ∈ Nc d∃a ∈ Nc g(g ⊆ b ∧ d ⊆ a))) |
38 | 35, 37 | sylan9bbr 681 |
. . . . . 6
⊢ ((A = Nc g ∧ B = Nc d) → (∃b ∈ B ∃a ∈ A (g ⊆ b ∧ d ⊆ a) ↔ ∃b ∈ Nc d∃a ∈ Nc g(g ⊆ b ∧ d ⊆ a))) |
39 | | eqeq12 2365 |
. . . . . 6
⊢ ((A = Nc g ∧ B = Nc d) → (A =
B ↔ Nc
g = Nc
d)) |
40 | 38, 39 | imbi12d 311 |
. . . . 5
⊢ ((A = Nc g ∧ B = Nc d) → ((∃b ∈ B ∃a ∈ A (g ⊆ b ∧ d ⊆ a) → A =
B) ↔ (∃b ∈ Nc d∃a ∈ Nc g(g ⊆ b ∧ d ⊆ a) → Nc g = Nc d))) |
41 | 34, 40 | mpbiri 224 |
. . . 4
⊢ ((A = Nc g ∧ B = Nc d) → (∃b ∈ B ∃a ∈ A (g ⊆ b ∧ d ⊆ a) → A =
B)) |
42 | 13, 41 | syl 15 |
. . 3
⊢ (((A ∈ NC ∧ B ∈ NC ) ∧ (g ∈ A ∧ d ∈ B)) → (∃b ∈ B ∃a ∈ A (g ⊆ b ∧ d ⊆ a) → A =
B)) |
43 | 42 | rexlimdvva 2746 |
. 2
⊢ ((A ∈ NC ∧ B ∈ NC ) → (∃g ∈ A ∃d ∈ B ∃b ∈ B ∃a ∈ A (g ⊆ b ∧ d ⊆ a) → A =
B)) |
44 | 9, 43 | sylbid 206 |
1
⊢ ((A ∈ NC ∧ B ∈ NC ) → ((A
≤c B ∧ B
≤c A) → A = B)) |