NFE Home New Foundations Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  NFE Home  >  Th. List  >  sbth GIF version

Theorem sbth 6207
Description: The Schroder-Bernstein Theorem. This theorem gives the antisymmetry law for cardinal less than or equal. Translated out, it means that, if A is no larger than B and B is no larger than A, then Nc A = Nc B. Theorem XI.2.20 of [Rosser] p. 376. (Contributed by SF, 11-Mar-2015.)
Assertion
Ref Expression
sbth ((A NC B NC ) → ((Ac B Bc A) → A = B))

Proof of Theorem sbth
Dummy variables a b d g are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 brlecg 6113 . . . 4 ((A NC B NC ) → (Ac Bg A b B g b))
2 brlecg 6113 . . . . 5 ((B NC A NC ) → (Bc Ad B a A d a))
32ancoms 439 . . . 4 ((A NC B NC ) → (Bc Ad B a A d a))
41, 3anbi12d 691 . . 3 ((A NC B NC ) → ((Ac B Bc A) ↔ (g A b B g b d B a A d a)))
5 reeanv 2779 . . . . 5 (b B a A (g b d a) ↔ (b B g b a A d a))
652rexbii 2642 . . . 4 (g A d B b B a A (g b d a) ↔ g A d B (b B g b a A d a))
7 reeanv 2779 . . . 4 (g A d B (b B g b a A d a) ↔ (g A b B g b d B a A d a))
86, 7bitri 240 . . 3 (g A d B b B a A (g b d a) ↔ (g A b B g b d B a A d a))
94, 8syl6bbr 254 . 2 ((A NC B NC ) → ((Ac B Bc A) ↔ g A d B b B a A (g b d a)))
10 ncseqnc 6129 . . . . . 6 (A NC → (A = Nc gg A))
11 ncseqnc 6129 . . . . . 6 (B NC → (B = Nc dd B))
1210, 11bi2anan9 843 . . . . 5 ((A NC B NC ) → ((A = Nc g B = Nc d) ↔ (g A d B)))
1312biimpar 471 . . . 4 (((A NC B NC ) (g A d B)) → (A = Nc g B = Nc d))
14 simplr 731 . . . . . . . . . . 11 (((bd ag) (g b d a)) → ag)
15 ensym 6038 . . . . . . . . . . 11 (agga)
1614, 15sylib 188 . . . . . . . . . 10 (((bd ag) (g b d a)) → ga)
17 simprl 732 . . . . . . . . . . 11 (((bd ag) (g b d a)) → g b)
18 simpll 730 . . . . . . . . . . 11 (((bd ag) (g b d a)) → bd)
19 simprr 733 . . . . . . . . . . 11 (((bd ag) (g b d a)) → d a)
20 sbthlem3 6206 . . . . . . . . . . 11 (((ag g b) (bd d a)) → ab)
2114, 17, 18, 19, 20syl22anc 1183 . . . . . . . . . 10 (((bd ag) (g b d a)) → ab)
22 entr 6039 . . . . . . . . . 10 ((ga ab) → gb)
2316, 21, 22syl2anc 642 . . . . . . . . 9 (((bd ag) (g b d a)) → gb)
24 entr 6039 . . . . . . . . 9 ((gb bd) → gd)
2523, 18, 24syl2anc 642 . . . . . . . 8 (((bd ag) (g b d a)) → gd)
2625ex 423 . . . . . . 7 ((bd ag) → ((g b d a) → gd))
27 elnc 6126 . . . . . . . 8 (b Nc dbd)
28 elnc 6126 . . . . . . . 8 (a Nc gag)
2927, 28anbi12i 678 . . . . . . 7 ((b Nc d a Nc g) ↔ (bd ag))
30 vex 2863 . . . . . . . . 9 g V
3130eqnc 6128 . . . . . . . 8 ( Nc g = Nc dgd)
3231imbi2i 303 . . . . . . 7 (((g b d a) → Nc g = Nc d) ↔ ((g b d a) → gd))
3326, 29, 323imtr4i 257 . . . . . 6 ((b Nc d a Nc g) → ((g b d a) → Nc g = Nc d))
3433rexlimivv 2744 . . . . 5 (b Nc da Nc g(g b d a) → Nc g = Nc d)
35 rexeq 2809 . . . . . . 7 (B = Nc d → (b B a A (g b d a) ↔ b Nc da A (g b d a)))
36 rexeq 2809 . . . . . . . 8 (A = Nc g → (a A (g b d a) ↔ a Nc g(g b d a)))
3736rexbidv 2636 . . . . . . 7 (A = Nc g → (b Nc da A (g b d a) ↔ b Nc da Nc g(g b d a)))
3835, 37sylan9bbr 681 . . . . . 6 ((A = Nc g B = Nc d) → (b B a A (g b d a) ↔ b Nc da Nc g(g b d a)))
39 eqeq12 2365 . . . . . 6 ((A = Nc g B = Nc d) → (A = BNc g = Nc d))
4038, 39imbi12d 311 . . . . 5 ((A = Nc g B = Nc d) → ((b B a A (g b d a) → A = B) ↔ (b Nc da Nc g(g b d a) → Nc g = Nc d)))
4134, 40mpbiri 224 . . . 4 ((A = Nc g B = Nc d) → (b B a A (g b d a) → A = B))
4213, 41syl 15 . . 3 (((A NC B NC ) (g A d B)) → (b B a A (g b d a) → A = B))
4342rexlimdvva 2746 . 2 ((A NC B NC ) → (g A d B b B a A (g b d a) → A = B))
449, 43sylbid 206 1 ((A NC B NC ) → ((Ac B Bc A) → A = B))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 176   wa 358   = wceq 1642   wcel 1710  wrex 2616   wss 3258   class class class wbr 4640  cen 6029   NC cncs 6089  c clec 6090   Nc cnc 6092
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1546  ax-5 1557  ax-17 1616  ax-9 1654  ax-8 1675  ax-13 1712  ax-14 1714  ax-6 1729  ax-7 1734  ax-11 1746  ax-12 1925  ax-ext 2334  ax-nin 4079  ax-xp 4080  ax-cnv 4081  ax-1c 4082  ax-sset 4083  ax-si 4084  ax-ins2 4085  ax-ins3 4086  ax-typlower 4087  ax-sn 4088
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-nan 1288  df-tru 1319  df-ex 1542  df-nf 1545  df-sb 1649  df-eu 2208  df-mo 2209  df-clab 2340  df-cleq 2346  df-clel 2349  df-nfc 2479  df-ne 2519  df-ral 2620  df-rex 2621  df-reu 2622  df-rmo 2623  df-rab 2624  df-v 2862  df-sbc 3048  df-nin 3212  df-compl 3213  df-in 3214  df-un 3215  df-dif 3216  df-symdif 3217  df-ss 3260  df-pss 3262  df-nul 3552  df-if 3664  df-pw 3725  df-sn 3742  df-pr 3743  df-uni 3893  df-int 3928  df-opk 4059  df-1c 4137  df-pw1 4138  df-uni1 4139  df-xpk 4186  df-cnvk 4187  df-ins2k 4188  df-ins3k 4189  df-imak 4190  df-cok 4191  df-p6 4192  df-sik 4193  df-ssetk 4194  df-imagek 4195  df-idk 4196  df-iota 4340  df-0c 4378  df-addc 4379  df-nnc 4380  df-fin 4381  df-lefin 4441  df-ltfin 4442  df-ncfin 4443  df-tfin 4444  df-evenfin 4445  df-oddfin 4446  df-sfin 4447  df-spfin 4448  df-phi 4566  df-op 4567  df-proj1 4568  df-proj2 4569  df-opab 4624  df-br 4641  df-1st 4724  df-swap 4725  df-sset 4726  df-co 4727  df-ima 4728  df-si 4729  df-id 4768  df-xp 4785  df-cnv 4786  df-rn 4787  df-dm 4788  df-res 4789  df-fun 4790  df-fn 4791  df-f 4792  df-f1 4793  df-fo 4794  df-f1o 4795  df-2nd 4798  df-txp 5737  df-fix 5741  df-ins2 5751  df-ins3 5753  df-image 5755  df-ins4 5757  df-si3 5759  df-funs 5761  df-fns 5763  df-clos1 5874  df-trans 5900  df-sym 5909  df-er 5910  df-ec 5948  df-qs 5952  df-en 6030  df-ncs 6099  df-lec 6100  df-nc 6102
This theorem is referenced by:  ltlenlec  6208  leltctr  6213  lecponc  6214  nclenn  6250  ncvsq  6257
  Copyright terms: Public domain W3C validator