NFE Home New Foundations Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  NFE Home  >  Th. List  >  spacvallem1 Unicode version

Theorem spacvallem1 6282
Description: Lemma for spacval 6283. Set up stratification for the recursive relationship. (Contributed by SF, 6-Mar-2015.)
Assertion
Ref Expression
spacvallem1 NC NC 2cc
Distinct variable group:   ,

Proof of Theorem spacvallem1
Dummy variable is distinct from all other variables.
StepHypRef Expression
1 opelxp 4812 . . . . 5 NC NC NC NC
2 opelco 4885 . . . . . . 7 FullFunc 2c 2c FullFunc
3 brcnv 4893 . . . . . . . . . 10 2c 2c
4 brres 4950 . . . . . . . . . . 11 2c 2c
5 ancom 437 . . . . . . . . . . 11 2c 2c
6 eliniseg 5021 . . . . . . . . . . . 12 2c 2c
76anbi1i 676 . . . . . . . . . . 11 2c 2c
84, 5, 73bitri 262 . . . . . . . . . 10 2c 2c
9 2nc 6169 . . . . . . . . . . . 12 2c NC
109elexi 2869 . . . . . . . . . . 11 2c
11 vex 2863 . . . . . . . . . . 11
1210, 11op1st2nd 5791 . . . . . . . . . 10 2c 2c
133, 8, 123bitri 262 . . . . . . . . 9 2c 2c
1413anbi1i 676 . . . . . . . 8 2c FullFunc 2c FullFunc
1514exbii 1582 . . . . . . 7 2c FullFunc 2c FullFunc
162, 15bitri 240 . . . . . 6 FullFunc 2c 2c FullFunc
1710, 11opex 4589 . . . . . . 7 2c
18 breq1 4643 . . . . . . 7 2c FullFunc 2c FullFunc
1917, 18ceqsexv 2895 . . . . . 6 2c FullFunc 2c FullFunc
2010, 11brfullfunop 5868 . . . . . . 7 2c FullFunc 2cc
21 eqcom 2355 . . . . . . 7 2cc 2cc
2220, 21bitri 240 . . . . . 6 2c FullFunc 2cc
2316, 19, 223bitri 262 . . . . 5 FullFunc 2c 2cc
241, 23anbi12i 678 . . . 4 NC NC FullFunc 2c NC NC 2cc
25 elin 3220 . . . 4 NC NC FullFunc 2c NC NC FullFunc 2c
26 df-3an 936 . . . 4 NC NC 2cc NC NC 2cc
2724, 25, 263bitr4i 268 . . 3 NC NC FullFunc 2c NC NC 2cc
2827opabbi2i 4867 . 2 NC NC FullFunc 2c NC NC 2cc
29 ncsex 6112 . . . 4 NC
3029, 29xpex 5116 . . 3 NC NC
31 ceex 6175 . . . . 5 c
3231fullfunex 5861 . . . 4 FullFunc
33 2ndex 5113 . . . . . 6
34 1stex 4740 . . . . . . . 8
3534cnvex 5103 . . . . . . 7
36 snex 4112 . . . . . . 7 2c
3735, 36imaex 4748 . . . . . 6 2c
3833, 37resex 5118 . . . . 5 2c
3938cnvex 5103 . . . 4 2c
4032, 39coex 4751 . . 3 FullFunc 2c
4130, 40inex 4106 . 2 NC NC FullFunc 2c
4228, 41eqeltrri 2424 1 NC NC 2cc
Colors of variables: wff setvar class
Syntax hints:   wa 358   w3a 934  wex 1541   wceq 1642   wcel 1710  cvv 2860   cin 3209  csn 3738  cop 4562  copab 4623   class class class wbr 4640  c1st 4718   ccom 4722  cima 4723   cxp 4771  ccnv 4772   cres 4775  c2nd 4784  (class class class)co 5526   FullFun cfullfun 5768   NC cncs 6089  2cc2c 6095   ↑c cce 6097
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1546  ax-5 1557  ax-17 1616  ax-9 1654  ax-8 1675  ax-13 1712  ax-14 1714  ax-6 1729  ax-7 1734  ax-11 1746  ax-12 1925  ax-ext 2334  ax-nin 4079  ax-xp 4080  ax-cnv 4081  ax-1c 4082  ax-sset 4083  ax-si 4084  ax-ins2 4085  ax-ins3 4086  ax-typlower 4087  ax-sn 4088
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-nan 1288  df-tru 1319  df-ex 1542  df-nf 1545  df-sb 1649  df-eu 2208  df-mo 2209  df-clab 2340  df-cleq 2346  df-clel 2349  df-nfc 2479  df-ne 2519  df-ral 2620  df-rex 2621  df-reu 2622  df-rmo 2623  df-rab 2624  df-v 2862  df-sbc 3048  df-nin 3212  df-compl 3213  df-in 3214  df-un 3215  df-dif 3216  df-symdif 3217  df-ss 3260  df-pss 3262  df-nul 3552  df-if 3664  df-pw 3725  df-sn 3742  df-pr 3743  df-uni 3893  df-int 3928  df-opk 4059  df-1c 4137  df-pw1 4138  df-uni1 4139  df-xpk 4186  df-cnvk 4187  df-ins2k 4188  df-ins3k 4189  df-imak 4190  df-cok 4191  df-p6 4192  df-sik 4193  df-ssetk 4194  df-imagek 4195  df-idk 4196  df-iota 4340  df-0c 4378  df-addc 4379  df-nnc 4380  df-fin 4381  df-lefin 4441  df-ltfin 4442  df-ncfin 4443  df-tfin 4444  df-evenfin 4445  df-oddfin 4446  df-sfin 4447  df-spfin 4448  df-phi 4566  df-op 4567  df-proj1 4568  df-proj2 4569  df-opab 4624  df-br 4641  df-1st 4724  df-swap 4725  df-sset 4726  df-co 4727  df-ima 4728  df-si 4729  df-id 4768  df-xp 4785  df-cnv 4786  df-rn 4787  df-dm 4788  df-res 4789  df-fun 4790  df-fn 4791  df-f 4792  df-f1 4793  df-fo 4794  df-f1o 4795  df-fv 4796  df-2nd 4798  df-ov 5527  df-oprab 5529  df-mpt 5653  df-mpt2 5655  df-txp 5737  df-ins2 5751  df-ins3 5753  df-image 5755  df-ins4 5757  df-si3 5759  df-funs 5761  df-fns 5763  df-pw1fn 5767  df-fullfun 5769  df-trans 5900  df-sym 5909  df-er 5910  df-ec 5948  df-qs 5952  df-map 6002  df-en 6030  df-ncs 6099  df-nc 6102  df-2c 6105  df-ce 6107
This theorem is referenced by:  spacval  6283  fnspac  6284  spacssnc  6285  spacind  6288  nchoicelem3  6292  nchoicelem11  6300  nchoicelem16  6305  nchoicelem18  6307
  Copyright terms: Public domain W3C validator