New Foundations Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  NFE Home  >  Th. List  >  spacvallem1 Unicode version

Theorem spacvallem1 6281
 Description: Lemma for spacval 6282. Set up stratification for the recursive relationship. (Contributed by SF, 6-Mar-2015.)
Assertion
Ref Expression
spacvallem1 NC NC 2cc
Distinct variable group:   ,

Proof of Theorem spacvallem1
Dummy variable is distinct from all other variables.
StepHypRef Expression
1 opelxp 4811 . . . . 5 NC NC NC NC
2 opelco 4884 . . . . . . 7 FullFunc 2c 2c FullFunc
3 brcnv 4892 . . . . . . . . . 10 2c 2c
4 brres 4949 . . . . . . . . . . 11 2c 2c
5 ancom 437 . . . . . . . . . . 11 2c 2c
6 eliniseg 5020 . . . . . . . . . . . 12 2c 2c
76anbi1i 676 . . . . . . . . . . 11 2c 2c
84, 5, 73bitri 262 . . . . . . . . . 10 2c 2c
9 2nc 6168 . . . . . . . . . . . 12 2c NC
109elexi 2868 . . . . . . . . . . 11 2c
11 vex 2862 . . . . . . . . . . 11
1210, 11op1st2nd 5790 . . . . . . . . . 10 2c 2c
133, 8, 123bitri 262 . . . . . . . . 9 2c 2c
1413anbi1i 676 . . . . . . . 8 2c FullFunc 2c FullFunc
1514exbii 1582 . . . . . . 7 2c FullFunc 2c FullFunc
162, 15bitri 240 . . . . . 6 FullFunc 2c 2c FullFunc
1710, 11opex 4588 . . . . . . 7 2c
18 breq1 4642 . . . . . . 7 2c FullFunc 2c FullFunc
1917, 18ceqsexv 2894 . . . . . 6 2c FullFunc 2c FullFunc
2010, 11brfullfunop 5867 . . . . . . 7 2c FullFunc 2cc
21 eqcom 2355 . . . . . . 7 2cc 2cc
2220, 21bitri 240 . . . . . 6 2c FullFunc 2cc
2316, 19, 223bitri 262 . . . . 5 FullFunc 2c 2cc
241, 23anbi12i 678 . . . 4 NC NC FullFunc 2c NC NC 2cc
25 elin 3219 . . . 4 NC NC FullFunc 2c NC NC FullFunc 2c
26 df-3an 936 . . . 4 NC NC 2cc NC NC 2cc
2724, 25, 263bitr4i 268 . . 3 NC NC FullFunc 2c NC NC 2cc
2827opabbi2i 4866 . 2 NC NC FullFunc 2c NC NC 2cc
29 ncsex 6111 . . . 4 NC
3029, 29xpex 5115 . . 3 NC NC
31 ceex 6174 . . . . 5 c
3231fullfunex 5860 . . . 4 FullFunc
33 2ndex 5112 . . . . . 6
34 1stex 4739 . . . . . . . 8
3534cnvex 5102 . . . . . . 7
36 snex 4111 . . . . . . 7 2c
3735, 36imaex 4747 . . . . . 6 2c
3833, 37resex 5117 . . . . 5 2c
3938cnvex 5102 . . . 4 2c
4032, 39coex 4750 . . 3 FullFunc 2c
4130, 40inex 4105 . 2 NC NC FullFunc 2c
4228, 41eqeltrri 2424 1 NC NC 2cc
 Colors of variables: wff setvar class Syntax hints:   wa 358   w3a 934  wex 1541   wceq 1642   wcel 1710  cvv 2859   cin 3208  csn 3737  cop 4561  copab 4622   class class class wbr 4639  c1st 4717   ccom 4721  cima 4722   cxp 4770  ccnv 4771   cres 4774  c2nd 4783  (class class class)co 5525   FullFun cfullfun 5767   NC cncs 6088  2cc2c 6094   ↑c cce 6096 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1546  ax-5 1557  ax-17 1616  ax-9 1654  ax-8 1675  ax-13 1712  ax-14 1714  ax-6 1729  ax-7 1734  ax-11 1746  ax-12 1925  ax-ext 2334  ax-nin 4078  ax-xp 4079  ax-cnv 4080  ax-1c 4081  ax-sset 4082  ax-si 4083  ax-ins2 4084  ax-ins3 4085  ax-typlower 4086  ax-sn 4087 This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-nan 1288  df-tru 1319  df-ex 1542  df-nf 1545  df-sb 1649  df-eu 2208  df-mo 2209  df-clab 2340  df-cleq 2346  df-clel 2349  df-nfc 2478  df-ne 2518  df-ral 2619  df-rex 2620  df-reu 2621  df-rmo 2622  df-rab 2623  df-v 2861  df-sbc 3047  df-nin 3211  df-compl 3212  df-in 3213  df-un 3214  df-dif 3215  df-symdif 3216  df-ss 3259  df-pss 3261  df-nul 3551  df-if 3663  df-pw 3724  df-sn 3741  df-pr 3742  df-uni 3892  df-int 3927  df-opk 4058  df-1c 4136  df-pw1 4137  df-uni1 4138  df-xpk 4185  df-cnvk 4186  df-ins2k 4187  df-ins3k 4188  df-imak 4189  df-cok 4190  df-p6 4191  df-sik 4192  df-ssetk 4193  df-imagek 4194  df-idk 4195  df-iota 4339  df-0c 4377  df-addc 4378  df-nnc 4379  df-fin 4380  df-lefin 4440  df-ltfin 4441  df-ncfin 4442  df-tfin 4443  df-evenfin 4444  df-oddfin 4445  df-sfin 4446  df-spfin 4447  df-phi 4565  df-op 4566  df-proj1 4567  df-proj2 4568  df-opab 4623  df-br 4640  df-1st 4723  df-swap 4724  df-sset 4725  df-co 4726  df-ima 4727  df-si 4728  df-id 4767  df-xp 4784  df-cnv 4785  df-rn 4786  df-dm 4787  df-res 4788  df-fun 4789  df-fn 4790  df-f 4791  df-f1 4792  df-fo 4793  df-f1o 4794  df-fv 4795  df-2nd 4797  df-ov 5526  df-oprab 5528  df-mpt 5652  df-mpt2 5654  df-txp 5736  df-ins2 5750  df-ins3 5752  df-image 5754  df-ins4 5756  df-si3 5758  df-funs 5760  df-fns 5762  df-pw1fn 5766  df-fullfun 5768  df-trans 5899  df-sym 5908  df-er 5909  df-ec 5947  df-qs 5951  df-map 6001  df-en 6029  df-ncs 6098  df-nc 6101  df-2c 6104  df-ce 6106 This theorem is referenced by:  spacval  6282  fnspac  6283  spacssnc  6284  spacind  6287  nchoicelem3  6291  nchoicelem11  6299  nchoicelem16  6304  nchoicelem18  6306
 Copyright terms: Public domain W3C validator