New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > fnov | GIF version |
Description: Representation of an operation class abstraction in terms of its values. (Contributed by set.mm contributors, 7-Feb-2004.) |
Ref | Expression |
---|---|
fnov | ⊢ (F Fn (A × B) ↔ F = {〈〈x, y〉, z〉 ∣ ((x ∈ A ∧ y ∈ B) ∧ z = (xFy))}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dffn5 5364 | . 2 ⊢ (F Fn (A × B) ↔ F = {〈w, z〉 ∣ (w ∈ (A × B) ∧ z = (F ‘w))}) | |
2 | elxp 4802 | . . . . . . 7 ⊢ (w ∈ (A × B) ↔ ∃x∃y(w = 〈x, y〉 ∧ (x ∈ A ∧ y ∈ B))) | |
3 | 2 | anbi1i 676 | . . . . . 6 ⊢ ((w ∈ (A × B) ∧ z = (F ‘w)) ↔ (∃x∃y(w = 〈x, y〉 ∧ (x ∈ A ∧ y ∈ B)) ∧ z = (F ‘w))) |
4 | 19.41vv 1902 | . . . . . 6 ⊢ (∃x∃y((w = 〈x, y〉 ∧ (x ∈ A ∧ y ∈ B)) ∧ z = (F ‘w)) ↔ (∃x∃y(w = 〈x, y〉 ∧ (x ∈ A ∧ y ∈ B)) ∧ z = (F ‘w))) | |
5 | anass 630 | . . . . . . . 8 ⊢ (((w = 〈x, y〉 ∧ (x ∈ A ∧ y ∈ B)) ∧ z = (F ‘w)) ↔ (w = 〈x, y〉 ∧ ((x ∈ A ∧ y ∈ B) ∧ z = (F ‘w)))) | |
6 | fveq2 5329 | . . . . . . . . . . . 12 ⊢ (w = 〈x, y〉 → (F ‘w) = (F ‘〈x, y〉)) | |
7 | df-ov 5527 | . . . . . . . . . . . 12 ⊢ (xFy) = (F ‘〈x, y〉) | |
8 | 6, 7 | syl6eqr 2403 | . . . . . . . . . . 11 ⊢ (w = 〈x, y〉 → (F ‘w) = (xFy)) |
9 | 8 | eqeq2d 2364 | . . . . . . . . . 10 ⊢ (w = 〈x, y〉 → (z = (F ‘w) ↔ z = (xFy))) |
10 | 9 | anbi2d 684 | . . . . . . . . 9 ⊢ (w = 〈x, y〉 → (((x ∈ A ∧ y ∈ B) ∧ z = (F ‘w)) ↔ ((x ∈ A ∧ y ∈ B) ∧ z = (xFy)))) |
11 | 10 | pm5.32i 618 | . . . . . . . 8 ⊢ ((w = 〈x, y〉 ∧ ((x ∈ A ∧ y ∈ B) ∧ z = (F ‘w))) ↔ (w = 〈x, y〉 ∧ ((x ∈ A ∧ y ∈ B) ∧ z = (xFy)))) |
12 | 5, 11 | bitri 240 | . . . . . . 7 ⊢ (((w = 〈x, y〉 ∧ (x ∈ A ∧ y ∈ B)) ∧ z = (F ‘w)) ↔ (w = 〈x, y〉 ∧ ((x ∈ A ∧ y ∈ B) ∧ z = (xFy)))) |
13 | 12 | 2exbii 1583 | . . . . . 6 ⊢ (∃x∃y((w = 〈x, y〉 ∧ (x ∈ A ∧ y ∈ B)) ∧ z = (F ‘w)) ↔ ∃x∃y(w = 〈x, y〉 ∧ ((x ∈ A ∧ y ∈ B) ∧ z = (xFy)))) |
14 | 3, 4, 13 | 3bitr2i 264 | . . . . 5 ⊢ ((w ∈ (A × B) ∧ z = (F ‘w)) ↔ ∃x∃y(w = 〈x, y〉 ∧ ((x ∈ A ∧ y ∈ B) ∧ z = (xFy)))) |
15 | 14 | opabbii 4627 | . . . 4 ⊢ {〈w, z〉 ∣ (w ∈ (A × B) ∧ z = (F ‘w))} = {〈w, z〉 ∣ ∃x∃y(w = 〈x, y〉 ∧ ((x ∈ A ∧ y ∈ B) ∧ z = (xFy)))} |
16 | dfoprab2 5559 | . . . 4 ⊢ {〈〈x, y〉, z〉 ∣ ((x ∈ A ∧ y ∈ B) ∧ z = (xFy))} = {〈w, z〉 ∣ ∃x∃y(w = 〈x, y〉 ∧ ((x ∈ A ∧ y ∈ B) ∧ z = (xFy)))} | |
17 | 15, 16 | eqtr4i 2376 | . . 3 ⊢ {〈w, z〉 ∣ (w ∈ (A × B) ∧ z = (F ‘w))} = {〈〈x, y〉, z〉 ∣ ((x ∈ A ∧ y ∈ B) ∧ z = (xFy))} |
18 | 17 | eqeq2i 2363 | . 2 ⊢ (F = {〈w, z〉 ∣ (w ∈ (A × B) ∧ z = (F ‘w))} ↔ F = {〈〈x, y〉, z〉 ∣ ((x ∈ A ∧ y ∈ B) ∧ z = (xFy))}) |
19 | 1, 18 | bitri 240 | 1 ⊢ (F Fn (A × B) ↔ F = {〈〈x, y〉, z〉 ∣ ((x ∈ A ∧ y ∈ B) ∧ z = (xFy))}) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 176 ∧ wa 358 ∃wex 1541 = wceq 1642 ∈ wcel 1710 〈cop 4562 {copab 4623 × cxp 4771 Fn wfn 4777 ‘cfv 4782 (class class class)co 5526 {coprab 5528 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-13 1712 ax-14 1714 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 ax-ext 2334 ax-nin 4079 ax-xp 4080 ax-cnv 4081 ax-1c 4082 ax-sset 4083 ax-si 4084 ax-ins2 4085 ax-ins3 4086 ax-typlower 4087 ax-sn 4088 |
This theorem depends on definitions: df-bi 177 df-or 359 df-an 360 df-3or 935 df-3an 936 df-nan 1288 df-tru 1319 df-ex 1542 df-nf 1545 df-sb 1649 df-eu 2208 df-mo 2209 df-clab 2340 df-cleq 2346 df-clel 2349 df-nfc 2479 df-ne 2519 df-ral 2620 df-rex 2621 df-reu 2622 df-rmo 2623 df-rab 2624 df-v 2862 df-sbc 3048 df-nin 3212 df-compl 3213 df-in 3214 df-un 3215 df-dif 3216 df-symdif 3217 df-ss 3260 df-pss 3262 df-nul 3552 df-if 3664 df-pw 3725 df-sn 3742 df-pr 3743 df-uni 3893 df-int 3928 df-opk 4059 df-1c 4137 df-pw1 4138 df-uni1 4139 df-xpk 4186 df-cnvk 4187 df-ins2k 4188 df-ins3k 4189 df-imak 4190 df-cok 4191 df-p6 4192 df-sik 4193 df-ssetk 4194 df-imagek 4195 df-idk 4196 df-iota 4340 df-0c 4378 df-addc 4379 df-nnc 4380 df-fin 4381 df-lefin 4441 df-ltfin 4442 df-ncfin 4443 df-tfin 4444 df-evenfin 4445 df-oddfin 4446 df-sfin 4447 df-spfin 4448 df-phi 4566 df-op 4567 df-proj1 4568 df-proj2 4569 df-opab 4624 df-br 4641 df-co 4727 df-ima 4728 df-id 4768 df-xp 4785 df-cnv 4786 df-rn 4787 df-dm 4788 df-fun 4790 df-fn 4791 df-fv 4796 df-ov 5527 df-oprab 5529 |
This theorem is referenced by: fov 5593 fnov2 5708 |
Copyright terms: Public domain | W3C validator |