NFE Home New Foundations Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  NFE Home  >  Th. List  >  pwsn GIF version

Theorem pwsn 3882
Description: The power set of a singleton. (Contributed by NM, 5-Jun-2006.)
Assertion
Ref Expression
pwsn {A} = {, {A}}

Proof of Theorem pwsn
Dummy variable x is distinct from all other variables.
StepHypRef Expression
1 sssn 3865 . . 3 (x {A} ↔ (x = x = {A}))
21abbii 2466 . 2 {x x {A}} = {x (x = x = {A})}
3 df-pw 3725 . 2 {A} = {x x {A}}
4 dfpr2 3750 . 2 {, {A}} = {x (x = x = {A})}
52, 3, 43eqtr4i 2383 1 {A} = {, {A}}
Colors of variables: wff setvar class
Syntax hints:   wo 357   = wceq 1642  {cab 2339   wss 3258  c0 3551  cpw 3723  {csn 3738  {cpr 3739
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1546  ax-5 1557  ax-17 1616  ax-9 1654  ax-8 1675  ax-6 1729  ax-7 1734  ax-11 1746  ax-12 1925  ax-ext 2334
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-nan 1288  df-tru 1319  df-ex 1542  df-nf 1545  df-sb 1649  df-clab 2340  df-cleq 2346  df-clel 2349  df-nfc 2479  df-ne 2519  df-v 2862  df-nin 3212  df-compl 3213  df-in 3214  df-un 3215  df-dif 3216  df-ss 3260  df-nul 3552  df-pw 3725  df-sn 3742  df-pr 3743
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator