Step | Hyp | Ref
| Expression |
1 | | vex 2863 |
. . . . . . 7
⊢ x ∈
V |
2 | 1 | elimak 4260 |
. . . . . 6
⊢ (x ∈ (( Sk ∖ (℘1A ×k V))
“k 1c) ↔ ∃t ∈ 1c ⟪t, x⟫
∈ ( Sk ∖ (℘1A ×k V))) |
3 | | el1c 4140 |
. . . . . . . . . 10
⊢ (t ∈
1c ↔ ∃y t = {y}) |
4 | 3 | anbi1i 676 |
. . . . . . . . 9
⊢ ((t ∈
1c ∧ ⟪t, x⟫
∈ ( Sk ∖ (℘1A ×k V))) ↔ (∃y t = {y} ∧ ⟪t,
x⟫ ∈ ( Sk ∖ (℘1A ×k V)))) |
5 | | 19.41v 1901 |
. . . . . . . . 9
⊢ (∃y(t = {y} ∧ ⟪t,
x⟫ ∈ ( Sk ∖ (℘1A ×k V))) ↔ (∃y t = {y} ∧ ⟪t,
x⟫ ∈ ( Sk ∖ (℘1A ×k V)))) |
6 | 4, 5 | bitr4i 243 |
. . . . . . . 8
⊢ ((t ∈
1c ∧ ⟪t, x⟫
∈ ( Sk ∖ (℘1A ×k V))) ↔ ∃y(t = {y} ∧ ⟪t,
x⟫ ∈ ( Sk ∖ (℘1A ×k V)))) |
7 | 6 | exbii 1582 |
. . . . . . 7
⊢ (∃t(t ∈
1c ∧ ⟪t, x⟫
∈ ( Sk ∖ (℘1A ×k V))) ↔ ∃t∃y(t = {y} ∧ ⟪t,
x⟫ ∈ ( Sk ∖ (℘1A ×k V)))) |
8 | | df-rex 2621 |
. . . . . . 7
⊢ (∃t ∈ 1c ⟪t, x⟫
∈ ( Sk ∖ (℘1A ×k V)) ↔ ∃t(t ∈
1c ∧ ⟪t, x⟫
∈ ( Sk ∖ (℘1A ×k V)))) |
9 | | excom 1741 |
. . . . . . 7
⊢ (∃y∃t(t = {y} ∧ ⟪t,
x⟫ ∈ ( Sk ∖ (℘1A ×k V))) ↔ ∃t∃y(t = {y} ∧ ⟪t,
x⟫ ∈ ( Sk ∖ (℘1A ×k V)))) |
10 | 7, 8, 9 | 3bitr4i 268 |
. . . . . 6
⊢ (∃t ∈ 1c ⟪t, x⟫
∈ ( Sk ∖ (℘1A ×k V)) ↔ ∃y∃t(t = {y} ∧ ⟪t,
x⟫ ∈ ( Sk ∖ (℘1A ×k V)))) |
11 | 2, 10 | bitri 240 |
. . . . 5
⊢ (x ∈ (( Sk ∖ (℘1A ×k V))
“k 1c) ↔ ∃y∃t(t = {y} ∧ ⟪t,
x⟫ ∈ ( Sk ∖ (℘1A ×k V)))) |
12 | | snex 4112 |
. . . . . . . 8
⊢ {y} ∈
V |
13 | | opkeq1 4060 |
. . . . . . . . 9
⊢ (t = {y} →
⟪t, x⟫ = ⟪{y}, x⟫) |
14 | 13 | eleq1d 2419 |
. . . . . . . 8
⊢ (t = {y} →
(⟪t, x⟫ ∈ (
Sk ∖ (℘1A ×k V)) ↔
⟪{y}, x⟫ ∈ (
Sk ∖ (℘1A ×k V)))) |
15 | 12, 14 | ceqsexv 2895 |
. . . . . . 7
⊢ (∃t(t = {y} ∧ ⟪t,
x⟫ ∈ ( Sk ∖ (℘1A ×k V))) ↔
⟪{y}, x⟫ ∈ (
Sk ∖ (℘1A ×k V))) |
16 | | eldif 3222 |
. . . . . . . 8
⊢ (⟪{y}, x⟫
∈ ( Sk ∖ (℘1A ×k V)) ↔
(⟪{y}, x⟫ ∈ Sk ∧
¬ ⟪{y}, x⟫ ∈ (℘1A ×k V))) |
17 | | vex 2863 |
. . . . . . . . . 10
⊢ y ∈
V |
18 | 17, 1 | elssetk 4271 |
. . . . . . . . 9
⊢ (⟪{y}, x⟫
∈ Sk ↔ y ∈ x) |
19 | 12, 1 | opkelxpk 4249 |
. . . . . . . . . . . 12
⊢ (⟪{y}, x⟫
∈ (℘1A ×k V) ↔ ({y} ∈ ℘1A ∧ x ∈
V)) |
20 | 1, 19 | mpbiran2 885 |
. . . . . . . . . . 11
⊢ (⟪{y}, x⟫
∈ (℘1A ×k V) ↔ {y} ∈ ℘1A) |
21 | | snelpw1 4147 |
. . . . . . . . . . 11
⊢ ({y} ∈ ℘1A ↔ y ∈ A) |
22 | 20, 21 | bitri 240 |
. . . . . . . . . 10
⊢ (⟪{y}, x⟫
∈ (℘1A ×k V) ↔ y ∈ A) |
23 | 22 | notbii 287 |
. . . . . . . . 9
⊢ (¬
⟪{y}, x⟫ ∈ (℘1A ×k V) ↔ ¬
y ∈
A) |
24 | 18, 23 | anbi12i 678 |
. . . . . . . 8
⊢ ((⟪{y}, x⟫
∈ Sk ∧
¬ ⟪{y}, x⟫ ∈ (℘1A ×k V)) ↔ (y ∈ x ∧ ¬ y ∈ A)) |
25 | | annim 414 |
. . . . . . . 8
⊢ ((y ∈ x ∧ ¬ y ∈ A) ↔ ¬ (y ∈ x → y ∈ A)) |
26 | 16, 24, 25 | 3bitri 262 |
. . . . . . 7
⊢ (⟪{y}, x⟫
∈ ( Sk ∖ (℘1A ×k V)) ↔ ¬
(y ∈
x → y ∈ A)) |
27 | 15, 26 | bitri 240 |
. . . . . 6
⊢ (∃t(t = {y} ∧ ⟪t,
x⟫ ∈ ( Sk ∖ (℘1A ×k V))) ↔ ¬
(y ∈
x → y ∈ A)) |
28 | 27 | exbii 1582 |
. . . . 5
⊢ (∃y∃t(t = {y} ∧ ⟪t,
x⟫ ∈ ( Sk ∖ (℘1A ×k V))) ↔ ∃y ¬
(y ∈
x → y ∈ A)) |
29 | | exnal 1574 |
. . . . 5
⊢ (∃y ¬
(y ∈
x → y ∈ A) ↔ ¬ ∀y(y ∈ x → y ∈ A)) |
30 | 11, 28, 29 | 3bitri 262 |
. . . 4
⊢ (x ∈ (( Sk ∖ (℘1A ×k V))
“k 1c) ↔ ¬ ∀y(y ∈ x → y ∈ A)) |
31 | 30 | con2bii 322 |
. . 3
⊢ (∀y(y ∈ x → y ∈ A) ↔
¬ x ∈
(( Sk ∖ (℘1A ×k V))
“k 1c)) |
32 | 1 | elpw 3729 |
. . . 4
⊢ (x ∈ ℘A ↔
x ⊆
A) |
33 | | dfss2 3263 |
. . . 4
⊢ (x ⊆ A ↔ ∀y(y ∈ x → y ∈ A)) |
34 | 32, 33 | bitri 240 |
. . 3
⊢ (x ∈ ℘A ↔
∀y(y ∈ x →
y ∈
A)) |
35 | 1 | elcompl 3226 |
. . 3
⊢ (x ∈ ∼ (( Sk ∖ (℘1A ×k V))
“k 1c) ↔ ¬ x ∈ (( Sk ∖ (℘1A ×k V))
“k 1c)) |
36 | 31, 34, 35 | 3bitr4i 268 |
. 2
⊢ (x ∈ ℘A ↔
x ∈ ∼
(( Sk ∖ (℘1A ×k V))
“k 1c)) |
37 | 36 | eqriv 2350 |
1
⊢ ℘A = ∼ ((
Sk ∖ (℘1A ×k V))
“k 1c) |