Step | Hyp | Ref
| Expression |
1 | | vex 2863 |
. . . . 5
⊢ m ∈
V |
2 | 1 | eluni1 4174 |
. . . 4
⊢ (m ∈
⋃1 ∼ (◡k( SIk (( Nn
×k Nn ) ∩ (( Ins3k (( Ins3k SIk ((℘1c ×k
V) ∖ (( Ins3k Sk ⊕ Ins2k SIk Sk ) “k ℘1℘1℘11c)) ∩ Ins2k Sk ) “k ℘1℘11c) ∩ Ins2k (( Ins3k SIk ∼ (( Ins3k Sk ⊕ Ins2k SIk Sk ) “k ℘1℘11c) ∩ Ins2k Sk ) “k ℘1℘11c))
“k ℘1℘1℘11c)) ∖ (( Ins2k ◡k(({{∅}} ×k {∅}) ∪ ( ∼ (( Ins2k Sk ⊕ Ins3k (( Ins3k ◡k Sk ∖ Ins2k (( Ins2k (( Nn ×k V) ∩ (( Ins2k SIk Sk ∩ Ins3k (( Ins3k SIk ((℘1c ×k
V) ∖ (( Ins3k Sk ⊕ Ins2k SIk Sk ) “k ℘1℘1℘11c)) ∩ Ins2k Sk ) “k ℘1℘11c))
“k ℘1℘1℘11c)) ⊕
Ins3k Ik )
“k ℘11c))
“k ℘11c))
“k ℘1℘11c) ∖ ({{∅}}
×k V))) ∩ Ins3k (( Ins2k ◡k(({{∅}} ×k {∅}) ∪ ( ∼ (( Ins2k Sk ⊕ Ins3k (( Ins3k ◡k Sk ∖ Ins2k (( Ins2k (( Nn ×k V) ∩ (( Ins2k SIk Sk ∩ Ins3k (( Ins3k SIk ((℘1c ×k
V) ∖ (( Ins3k Sk ⊕ Ins2k SIk Sk ) “k ℘1℘1℘11c)) ∩ Ins2k Sk ) “k ℘1℘11c))
“k ℘1℘1℘11c)) ⊕
Ins3k Ik )
“k ℘11c))
“k ℘11c))
“k ℘1℘11c) ∖ ({{∅}}
×k V))) ∩ Ins3k (( Nn ×k Nn ) ∩ (( Ins3k (( Ins3k SIk ((℘1c ×k
V) ∖ (( Ins3k Sk ⊕ Ins2k SIk Sk ) “k ℘1℘1℘11c)) ∩ Ins2k Sk ) “k ℘1℘11c) ∩ Ins2k (( Ins3k SIk ∼ (( Ins3k Sk ⊕ Ins2k SIk Sk ) “k ℘1℘11c) ∩ Ins2k Sk ) “k ℘1℘11c))
“k ℘1℘1℘11c)))
“k ℘11c))
“k ℘11c))
“k 1c) ↔ {m} ∈ ∼ (◡k( SIk (( Nn
×k Nn ) ∩ (( Ins3k (( Ins3k SIk ((℘1c ×k
V) ∖ (( Ins3k Sk ⊕ Ins2k SIk Sk ) “k ℘1℘1℘11c)) ∩ Ins2k Sk ) “k ℘1℘11c) ∩ Ins2k (( Ins3k SIk ∼ (( Ins3k Sk ⊕ Ins2k SIk Sk ) “k ℘1℘11c) ∩ Ins2k Sk ) “k ℘1℘11c))
“k ℘1℘1℘11c)) ∖ (( Ins2k ◡k(({{∅}} ×k {∅}) ∪ ( ∼ (( Ins2k Sk ⊕ Ins3k (( Ins3k ◡k Sk ∖ Ins2k (( Ins2k (( Nn ×k V) ∩ (( Ins2k SIk Sk ∩ Ins3k (( Ins3k SIk ((℘1c ×k
V) ∖ (( Ins3k Sk ⊕ Ins2k SIk Sk ) “k ℘1℘1℘11c)) ∩ Ins2k Sk ) “k ℘1℘11c))
“k ℘1℘1℘11c)) ⊕
Ins3k Ik )
“k ℘11c))
“k ℘11c))
“k ℘1℘11c) ∖ ({{∅}}
×k V))) ∩ Ins3k (( Ins2k ◡k(({{∅}} ×k {∅}) ∪ ( ∼ (( Ins2k Sk ⊕ Ins3k (( Ins3k ◡k Sk ∖ Ins2k (( Ins2k (( Nn ×k V) ∩ (( Ins2k SIk Sk ∩ Ins3k (( Ins3k SIk ((℘1c ×k
V) ∖ (( Ins3k Sk ⊕ Ins2k SIk Sk ) “k ℘1℘1℘11c)) ∩ Ins2k Sk ) “k ℘1℘11c))
“k ℘1℘1℘11c)) ⊕
Ins3k Ik )
“k ℘11c))
“k ℘11c))
“k ℘1℘11c) ∖ ({{∅}}
×k V))) ∩ Ins3k (( Nn ×k Nn ) ∩ (( Ins3k (( Ins3k SIk ((℘1c ×k
V) ∖ (( Ins3k Sk ⊕ Ins2k SIk Sk ) “k ℘1℘1℘11c)) ∩ Ins2k Sk ) “k ℘1℘11c) ∩ Ins2k (( Ins3k SIk ∼ (( Ins3k Sk ⊕ Ins2k SIk Sk ) “k ℘1℘11c) ∩ Ins2k Sk ) “k ℘1℘11c))
“k ℘1℘1℘11c)))
“k ℘11c))
“k ℘11c))
“k 1c)) |
3 | | snex 4112 |
. . . . . . . 8
⊢ {m} ∈
V |
4 | 3 | elimak 4260 |
. . . . . . 7
⊢ ({m} ∈ (◡k( SIk (( Nn
×k Nn ) ∩ (( Ins3k (( Ins3k SIk ((℘1c ×k
V) ∖ (( Ins3k Sk ⊕ Ins2k SIk Sk ) “k ℘1℘1℘11c)) ∩ Ins2k Sk ) “k ℘1℘11c) ∩ Ins2k (( Ins3k SIk ∼ (( Ins3k Sk ⊕ Ins2k SIk Sk ) “k ℘1℘11c) ∩ Ins2k Sk ) “k ℘1℘11c))
“k ℘1℘1℘11c)) ∖ (( Ins2k ◡k(({{∅}} ×k {∅}) ∪ ( ∼ (( Ins2k Sk ⊕ Ins3k (( Ins3k ◡k Sk ∖ Ins2k (( Ins2k (( Nn ×k V) ∩ (( Ins2k SIk Sk ∩ Ins3k (( Ins3k SIk ((℘1c ×k
V) ∖ (( Ins3k Sk ⊕ Ins2k SIk Sk ) “k ℘1℘1℘11c)) ∩ Ins2k Sk ) “k ℘1℘11c))
“k ℘1℘1℘11c)) ⊕
Ins3k Ik )
“k ℘11c))
“k ℘11c))
“k ℘1℘11c) ∖ ({{∅}}
×k V))) ∩ Ins3k (( Ins2k ◡k(({{∅}} ×k {∅}) ∪ ( ∼ (( Ins2k Sk ⊕ Ins3k (( Ins3k ◡k Sk ∖ Ins2k (( Ins2k (( Nn ×k V) ∩ (( Ins2k SIk Sk ∩ Ins3k (( Ins3k SIk ((℘1c ×k
V) ∖ (( Ins3k Sk ⊕ Ins2k SIk Sk ) “k ℘1℘1℘11c)) ∩ Ins2k Sk ) “k ℘1℘11c))
“k ℘1℘1℘11c)) ⊕
Ins3k Ik )
“k ℘11c))
“k ℘11c))
“k ℘1℘11c) ∖ ({{∅}}
×k V))) ∩ Ins3k (( Nn ×k Nn ) ∩ (( Ins3k (( Ins3k SIk ((℘1c ×k
V) ∖ (( Ins3k Sk ⊕ Ins2k SIk Sk ) “k ℘1℘1℘11c)) ∩ Ins2k Sk ) “k ℘1℘11c) ∩ Ins2k (( Ins3k SIk ∼ (( Ins3k Sk ⊕ Ins2k SIk Sk ) “k ℘1℘11c) ∩ Ins2k Sk ) “k ℘1℘11c))
“k ℘1℘1℘11c)))
“k ℘11c))
“k ℘11c))
“k 1c) ↔ ∃t ∈ 1c ⟪t, {m}⟫
∈ ◡k( SIk (( Nn
×k Nn ) ∩ (( Ins3k (( Ins3k SIk ((℘1c ×k
V) ∖ (( Ins3k Sk ⊕ Ins2k SIk Sk ) “k ℘1℘1℘11c)) ∩ Ins2k Sk ) “k ℘1℘11c) ∩ Ins2k (( Ins3k SIk ∼ (( Ins3k Sk ⊕ Ins2k SIk Sk ) “k ℘1℘11c) ∩ Ins2k Sk ) “k ℘1℘11c))
“k ℘1℘1℘11c)) ∖ (( Ins2k ◡k(({{∅}} ×k {∅}) ∪ ( ∼ (( Ins2k Sk ⊕ Ins3k (( Ins3k ◡k Sk ∖ Ins2k (( Ins2k (( Nn ×k V) ∩ (( Ins2k SIk Sk ∩ Ins3k (( Ins3k SIk ((℘1c ×k
V) ∖ (( Ins3k Sk ⊕ Ins2k SIk Sk ) “k ℘1℘1℘11c)) ∩ Ins2k Sk ) “k ℘1℘11c))
“k ℘1℘1℘11c)) ⊕
Ins3k Ik )
“k ℘11c))
“k ℘11c))
“k ℘1℘11c) ∖ ({{∅}}
×k V))) ∩ Ins3k (( Ins2k ◡k(({{∅}} ×k {∅}) ∪ ( ∼ (( Ins2k Sk ⊕ Ins3k (( Ins3k ◡k Sk ∖ Ins2k (( Ins2k (( Nn ×k V) ∩ (( Ins2k SIk Sk ∩ Ins3k (( Ins3k SIk ((℘1c ×k
V) ∖ (( Ins3k Sk ⊕ Ins2k SIk Sk ) “k ℘1℘1℘11c)) ∩ Ins2k Sk ) “k ℘1℘11c))
“k ℘1℘1℘11c)) ⊕
Ins3k Ik )
“k ℘11c))
“k ℘11c))
“k ℘1℘11c) ∖ ({{∅}}
×k V))) ∩ Ins3k (( Nn ×k Nn ) ∩ (( Ins3k (( Ins3k SIk ((℘1c ×k
V) ∖ (( Ins3k Sk ⊕ Ins2k SIk Sk ) “k ℘1℘1℘11c)) ∩ Ins2k Sk ) “k ℘1℘11c) ∩ Ins2k (( Ins3k SIk ∼ (( Ins3k Sk ⊕ Ins2k SIk Sk ) “k ℘1℘11c) ∩ Ins2k Sk ) “k ℘1℘11c))
“k ℘1℘1℘11c)))
“k ℘11c))
“k ℘11c))) |
5 | | el1c 4140 |
. . . . . . . . . . 11
⊢ (t ∈
1c ↔ ∃n t = {n}) |
6 | 5 | anbi1i 676 |
. . . . . . . . . 10
⊢ ((t ∈
1c ∧ ⟪t, {m}⟫
∈ ◡k( SIk (( Nn
×k Nn ) ∩ (( Ins3k (( Ins3k SIk ((℘1c ×k
V) ∖ (( Ins3k Sk ⊕ Ins2k SIk Sk ) “k ℘1℘1℘11c)) ∩ Ins2k Sk ) “k ℘1℘11c) ∩ Ins2k (( Ins3k SIk ∼ (( Ins3k Sk ⊕ Ins2k SIk Sk ) “k ℘1℘11c) ∩ Ins2k Sk ) “k ℘1℘11c))
“k ℘1℘1℘11c)) ∖ (( Ins2k ◡k(({{∅}} ×k {∅}) ∪ ( ∼ (( Ins2k Sk ⊕ Ins3k (( Ins3k ◡k Sk ∖ Ins2k (( Ins2k (( Nn ×k V) ∩ (( Ins2k SIk Sk ∩ Ins3k (( Ins3k SIk ((℘1c ×k
V) ∖ (( Ins3k Sk ⊕ Ins2k SIk Sk ) “k ℘1℘1℘11c)) ∩ Ins2k Sk ) “k ℘1℘11c))
“k ℘1℘1℘11c)) ⊕
Ins3k Ik )
“k ℘11c))
“k ℘11c))
“k ℘1℘11c) ∖ ({{∅}}
×k V))) ∩ Ins3k (( Ins2k ◡k(({{∅}} ×k {∅}) ∪ ( ∼ (( Ins2k Sk ⊕ Ins3k (( Ins3k ◡k Sk ∖ Ins2k (( Ins2k (( Nn ×k V) ∩ (( Ins2k SIk Sk ∩ Ins3k (( Ins3k SIk ((℘1c ×k
V) ∖ (( Ins3k Sk ⊕ Ins2k SIk Sk ) “k ℘1℘1℘11c)) ∩ Ins2k Sk ) “k ℘1℘11c))
“k ℘1℘1℘11c)) ⊕
Ins3k Ik )
“k ℘11c))
“k ℘11c))
“k ℘1℘11c) ∖ ({{∅}}
×k V))) ∩ Ins3k (( Nn ×k Nn ) ∩ (( Ins3k (( Ins3k SIk ((℘1c ×k
V) ∖ (( Ins3k Sk ⊕ Ins2k SIk Sk ) “k ℘1℘1℘11c)) ∩ Ins2k Sk ) “k ℘1℘11c) ∩ Ins2k (( Ins3k SIk ∼ (( Ins3k Sk ⊕ Ins2k SIk Sk ) “k ℘1℘11c) ∩ Ins2k Sk ) “k ℘1℘11c))
“k ℘1℘1℘11c)))
“k ℘11c))
“k ℘11c))) ↔
(∃n
t = {n}
∧ ⟪t, {m}⟫
∈ ◡k( SIk (( Nn
×k Nn ) ∩ (( Ins3k (( Ins3k SIk ((℘1c ×k
V) ∖ (( Ins3k Sk ⊕ Ins2k SIk Sk ) “k ℘1℘1℘11c)) ∩ Ins2k Sk ) “k ℘1℘11c) ∩ Ins2k (( Ins3k SIk ∼ (( Ins3k Sk ⊕ Ins2k SIk Sk ) “k ℘1℘11c) ∩ Ins2k Sk ) “k ℘1℘11c))
“k ℘1℘1℘11c)) ∖ (( Ins2k ◡k(({{∅}} ×k {∅}) ∪ ( ∼ (( Ins2k Sk ⊕ Ins3k (( Ins3k ◡k Sk ∖ Ins2k (( Ins2k (( Nn ×k V) ∩ (( Ins2k SIk Sk ∩ Ins3k (( Ins3k SIk ((℘1c ×k
V) ∖ (( Ins3k Sk ⊕ Ins2k SIk Sk ) “k ℘1℘1℘11c)) ∩ Ins2k Sk ) “k ℘1℘11c))
“k ℘1℘1℘11c)) ⊕
Ins3k Ik )
“k ℘11c))
“k ℘11c))
“k ℘1℘11c) ∖ ({{∅}}
×k V))) ∩ Ins3k (( Ins2k ◡k(({{∅}} ×k {∅}) ∪ ( ∼ (( Ins2k Sk ⊕ Ins3k (( Ins3k ◡k Sk ∖ Ins2k (( Ins2k (( Nn ×k V) ∩ (( Ins2k SIk Sk ∩ Ins3k (( Ins3k SIk ((℘1c ×k
V) ∖ (( Ins3k Sk ⊕ Ins2k SIk Sk ) “k ℘1℘1℘11c)) ∩ Ins2k Sk ) “k ℘1℘11c))
“k ℘1℘1℘11c)) ⊕
Ins3k Ik )
“k ℘11c))
“k ℘11c))
“k ℘1℘11c) ∖ ({{∅}}
×k V))) ∩ Ins3k (( Nn ×k Nn ) ∩ (( Ins3k (( Ins3k SIk ((℘1c ×k
V) ∖ (( Ins3k Sk ⊕ Ins2k SIk Sk ) “k ℘1℘1℘11c)) ∩ Ins2k Sk ) “k ℘1℘11c) ∩ Ins2k (( Ins3k SIk ∼ (( Ins3k Sk ⊕ Ins2k SIk Sk ) “k ℘1℘11c) ∩ Ins2k Sk ) “k ℘1℘11c))
“k ℘1℘1℘11c)))
“k ℘11c))
“k ℘11c)))) |
7 | | 19.41v 1901 |
. . . . . . . . . 10
⊢ (∃n(t = {n} ∧ ⟪t,
{m}⟫ ∈ ◡k( SIk (( Nn
×k Nn ) ∩ (( Ins3k (( Ins3k SIk ((℘1c ×k
V) ∖ (( Ins3k Sk ⊕ Ins2k SIk Sk ) “k ℘1℘1℘11c)) ∩ Ins2k Sk ) “k ℘1℘11c) ∩ Ins2k (( Ins3k SIk ∼ (( Ins3k Sk ⊕ Ins2k SIk Sk ) “k ℘1℘11c) ∩ Ins2k Sk ) “k ℘1℘11c))
“k ℘1℘1℘11c)) ∖ (( Ins2k ◡k(({{∅}} ×k {∅}) ∪ ( ∼ (( Ins2k Sk ⊕ Ins3k (( Ins3k ◡k Sk ∖ Ins2k (( Ins2k (( Nn ×k V) ∩ (( Ins2k SIk Sk ∩ Ins3k (( Ins3k SIk ((℘1c ×k
V) ∖ (( Ins3k Sk ⊕ Ins2k SIk Sk ) “k ℘1℘1℘11c)) ∩ Ins2k Sk ) “k ℘1℘11c))
“k ℘1℘1℘11c)) ⊕
Ins3k Ik )
“k ℘11c))
“k ℘11c))
“k ℘1℘11c) ∖ ({{∅}}
×k V))) ∩ Ins3k (( Ins2k ◡k(({{∅}} ×k {∅}) ∪ ( ∼ (( Ins2k Sk ⊕ Ins3k (( Ins3k ◡k Sk ∖ Ins2k (( Ins2k (( Nn ×k V) ∩ (( Ins2k SIk Sk ∩ Ins3k (( Ins3k SIk ((℘1c ×k
V) ∖ (( Ins3k Sk ⊕ Ins2k SIk Sk ) “k ℘1℘1℘11c)) ∩ Ins2k Sk ) “k ℘1℘11c))
“k ℘1℘1℘11c)) ⊕
Ins3k Ik )
“k ℘11c))
“k ℘11c))
“k ℘1℘11c) ∖ ({{∅}}
×k V))) ∩ Ins3k (( Nn ×k Nn ) ∩ (( Ins3k (( Ins3k SIk ((℘1c ×k
V) ∖ (( Ins3k Sk ⊕ Ins2k SIk Sk ) “k ℘1℘1℘11c)) ∩ Ins2k Sk ) “k ℘1℘11c) ∩ Ins2k (( Ins3k SIk ∼ (( Ins3k Sk ⊕ Ins2k SIk Sk ) “k ℘1℘11c) ∩ Ins2k Sk ) “k ℘1℘11c))
“k ℘1℘1℘11c)))
“k ℘11c))
“k ℘11c))) ↔
(∃n
t = {n}
∧ ⟪t, {m}⟫
∈ ◡k( SIk (( Nn
×k Nn ) ∩ (( Ins3k (( Ins3k SIk ((℘1c ×k
V) ∖ (( Ins3k Sk ⊕ Ins2k SIk Sk ) “k ℘1℘1℘11c)) ∩ Ins2k Sk ) “k ℘1℘11c) ∩ Ins2k (( Ins3k SIk ∼ (( Ins3k Sk ⊕ Ins2k SIk Sk ) “k ℘1℘11c) ∩ Ins2k Sk ) “k ℘1℘11c))
“k ℘1℘1℘11c)) ∖ (( Ins2k ◡k(({{∅}} ×k {∅}) ∪ ( ∼ (( Ins2k Sk ⊕ Ins3k (( Ins3k ◡k Sk ∖ Ins2k (( Ins2k (( Nn ×k V) ∩ (( Ins2k SIk Sk ∩ Ins3k (( Ins3k SIk ((℘1c ×k
V) ∖ (( Ins3k Sk ⊕ Ins2k SIk Sk ) “k ℘1℘1℘11c)) ∩ Ins2k Sk ) “k ℘1℘11c))
“k ℘1℘1℘11c)) ⊕
Ins3k Ik )
“k ℘11c))
“k ℘11c))
“k ℘1℘11c) ∖ ({{∅}}
×k V))) ∩ Ins3k (( Ins2k ◡k(({{∅}} ×k {∅}) ∪ ( ∼ (( Ins2k Sk ⊕ Ins3k (( Ins3k ◡k Sk ∖ Ins2k (( Ins2k (( Nn ×k V) ∩ (( Ins2k SIk Sk ∩ Ins3k (( Ins3k SIk ((℘1c ×k
V) ∖ (( Ins3k Sk ⊕ Ins2k SIk Sk ) “k ℘1℘1℘11c)) ∩ Ins2k Sk ) “k ℘1℘11c))
“k ℘1℘1℘11c)) ⊕
Ins3k Ik )
“k ℘11c))
“k ℘11c))
“k ℘1℘11c) ∖ ({{∅}}
×k V))) ∩ Ins3k (( Nn ×k Nn ) ∩ (( Ins3k (( Ins3k SIk ((℘1c ×k
V) ∖ (( Ins3k Sk ⊕ Ins2k SIk Sk ) “k ℘1℘1℘11c)) ∩ Ins2k Sk ) “k ℘1℘11c) ∩ Ins2k (( Ins3k SIk ∼ (( Ins3k Sk ⊕ Ins2k SIk Sk ) “k ℘1℘11c) ∩ Ins2k Sk ) “k ℘1℘11c))
“k ℘1℘1℘11c)))
“k ℘11c))
“k ℘11c)))) |
8 | 6, 7 | bitr4i 243 |
. . . . . . . . 9
⊢ ((t ∈
1c ∧ ⟪t, {m}⟫
∈ ◡k( SIk (( Nn
×k Nn ) ∩ (( Ins3k (( Ins3k SIk ((℘1c ×k
V) ∖ (( Ins3k Sk ⊕ Ins2k SIk Sk ) “k ℘1℘1℘11c)) ∩ Ins2k Sk ) “k ℘1℘11c) ∩ Ins2k (( Ins3k SIk ∼ (( Ins3k Sk ⊕ Ins2k SIk Sk ) “k ℘1℘11c) ∩ Ins2k Sk ) “k ℘1℘11c))
“k ℘1℘1℘11c)) ∖ (( Ins2k ◡k(({{∅}} ×k {∅}) ∪ ( ∼ (( Ins2k Sk ⊕ Ins3k (( Ins3k ◡k Sk ∖ Ins2k (( Ins2k (( Nn ×k V) ∩ (( Ins2k SIk Sk ∩ Ins3k (( Ins3k SIk ((℘1c ×k
V) ∖ (( Ins3k Sk ⊕ Ins2k SIk Sk ) “k ℘1℘1℘11c)) ∩ Ins2k Sk ) “k ℘1℘11c))
“k ℘1℘1℘11c)) ⊕
Ins3k Ik )
“k ℘11c))
“k ℘11c))
“k ℘1℘11c) ∖ ({{∅}}
×k V))) ∩ Ins3k (( Ins2k ◡k(({{∅}} ×k {∅}) ∪ ( ∼ (( Ins2k Sk ⊕ Ins3k (( Ins3k ◡k Sk ∖ Ins2k (( Ins2k (( Nn ×k V) ∩ (( Ins2k SIk Sk ∩ Ins3k (( Ins3k SIk ((℘1c ×k
V) ∖ (( Ins3k Sk ⊕ Ins2k SIk Sk ) “k ℘1℘1℘11c)) ∩ Ins2k Sk ) “k ℘1℘11c))
“k ℘1℘1℘11c)) ⊕
Ins3k Ik )
“k ℘11c))
“k ℘11c))
“k ℘1℘11c) ∖ ({{∅}}
×k V))) ∩ Ins3k (( Nn ×k Nn ) ∩ (( Ins3k (( Ins3k SIk ((℘1c ×k
V) ∖ (( Ins3k Sk ⊕ Ins2k SIk Sk ) “k ℘1℘1℘11c)) ∩ Ins2k Sk ) “k ℘1℘11c) ∩ Ins2k (( Ins3k SIk ∼ (( Ins3k Sk ⊕ Ins2k SIk Sk ) “k ℘1℘11c) ∩ Ins2k Sk ) “k ℘1℘11c))
“k ℘1℘1℘11c)))
“k ℘11c))
“k ℘11c))) ↔ ∃n(t = {n} ∧ ⟪t,
{m}⟫ ∈ ◡k( SIk (( Nn
×k Nn ) ∩ (( Ins3k (( Ins3k SIk ((℘1c ×k
V) ∖ (( Ins3k Sk ⊕ Ins2k SIk Sk ) “k ℘1℘1℘11c)) ∩ Ins2k Sk ) “k ℘1℘11c) ∩ Ins2k (( Ins3k SIk ∼ (( Ins3k Sk ⊕ Ins2k SIk Sk ) “k ℘1℘11c) ∩ Ins2k Sk ) “k ℘1℘11c))
“k ℘1℘1℘11c)) ∖ (( Ins2k ◡k(({{∅}} ×k {∅}) ∪ ( ∼ (( Ins2k Sk ⊕ Ins3k (( Ins3k ◡k Sk ∖ Ins2k (( Ins2k (( Nn ×k V) ∩ (( Ins2k SIk Sk ∩ Ins3k (( Ins3k SIk ((℘1c ×k
V) ∖ (( Ins3k Sk ⊕ Ins2k SIk Sk ) “k ℘1℘1℘11c)) ∩ Ins2k Sk ) “k ℘1℘11c))
“k ℘1℘1℘11c)) ⊕
Ins3k Ik )
“k ℘11c))
“k ℘11c))
“k ℘1℘11c) ∖ ({{∅}}
×k V))) ∩ Ins3k (( Ins2k ◡k(({{∅}} ×k {∅}) ∪ ( ∼ (( Ins2k Sk ⊕ Ins3k (( Ins3k ◡k Sk ∖ Ins2k (( Ins2k (( Nn ×k V) ∩ (( Ins2k SIk Sk ∩ Ins3k (( Ins3k SIk ((℘1c ×k
V) ∖ (( Ins3k Sk ⊕ Ins2k SIk Sk ) “k ℘1℘1℘11c)) ∩ Ins2k Sk ) “k ℘1℘11c))
“k ℘1℘1℘11c)) ⊕
Ins3k Ik )
“k ℘11c))
“k ℘11c))
“k ℘1℘11c) ∖ ({{∅}}
×k V))) ∩ Ins3k (( Nn ×k Nn ) ∩ (( Ins3k (( Ins3k SIk ((℘1c ×k
V) ∖ (( Ins3k Sk ⊕ Ins2k SIk Sk ) “k ℘1℘1℘11c)) ∩ Ins2k Sk ) “k ℘1℘11c) ∩ Ins2k (( Ins3k SIk ∼ (( Ins3k Sk ⊕ Ins2k SIk Sk ) “k ℘1℘11c) ∩ Ins2k Sk ) “k ℘1℘11c))
“k ℘1℘1℘11c)))
“k ℘11c))
“k ℘11c)))) |
9 | 8 | exbii 1582 |
. . . . . . . 8
⊢ (∃t(t ∈
1c ∧ ⟪t, {m}⟫
∈ ◡k( SIk (( Nn
×k Nn ) ∩ (( Ins3k (( Ins3k SIk ((℘1c ×k
V) ∖ (( Ins3k Sk ⊕ Ins2k SIk Sk ) “k ℘1℘1℘11c)) ∩ Ins2k Sk ) “k ℘1℘11c) ∩ Ins2k (( Ins3k SIk ∼ (( Ins3k Sk ⊕ Ins2k SIk Sk ) “k ℘1℘11c) ∩ Ins2k Sk ) “k ℘1℘11c))
“k ℘1℘1℘11c)) ∖ (( Ins2k ◡k(({{∅}} ×k {∅}) ∪ ( ∼ (( Ins2k Sk ⊕ Ins3k (( Ins3k ◡k Sk ∖ Ins2k (( Ins2k (( Nn ×k V) ∩ (( Ins2k SIk Sk ∩ Ins3k (( Ins3k SIk ((℘1c ×k
V) ∖ (( Ins3k Sk ⊕ Ins2k SIk Sk ) “k ℘1℘1℘11c)) ∩ Ins2k Sk ) “k ℘1℘11c))
“k ℘1℘1℘11c)) ⊕
Ins3k Ik )
“k ℘11c))
“k ℘11c))
“k ℘1℘11c) ∖ ({{∅}}
×k V))) ∩ Ins3k (( Ins2k ◡k(({{∅}} ×k {∅}) ∪ ( ∼ (( Ins2k Sk ⊕ Ins3k (( Ins3k ◡k Sk ∖ Ins2k (( Ins2k (( Nn ×k V) ∩ (( Ins2k SIk Sk ∩ Ins3k (( Ins3k SIk ((℘1c ×k
V) ∖ (( Ins3k Sk ⊕ Ins2k SIk Sk ) “k ℘1℘1℘11c)) ∩ Ins2k Sk ) “k ℘1℘11c))
“k ℘1℘1℘11c)) ⊕
Ins3k Ik )
“k ℘11c))
“k ℘11c))
“k ℘1℘11c) ∖ ({{∅}}
×k V))) ∩ Ins3k (( Nn ×k Nn ) ∩ (( Ins3k (( Ins3k SIk ((℘1c ×k
V) ∖ (( Ins3k Sk ⊕ Ins2k SIk Sk ) “k ℘1℘1℘11c)) ∩ Ins2k Sk ) “k ℘1℘11c) ∩ Ins2k (( Ins3k SIk ∼ (( Ins3k Sk ⊕ Ins2k SIk Sk ) “k ℘1℘11c) ∩ Ins2k Sk ) “k ℘1℘11c))
“k ℘1℘1℘11c)))
“k ℘11c))
“k ℘11c))) ↔ ∃t∃n(t = {n} ∧ ⟪t,
{m}⟫ ∈ ◡k( SIk (( Nn
×k Nn ) ∩ (( Ins3k (( Ins3k SIk ((℘1c ×k
V) ∖ (( Ins3k Sk ⊕ Ins2k SIk Sk ) “k ℘1℘1℘11c)) ∩ Ins2k Sk ) “k ℘1℘11c) ∩ Ins2k (( Ins3k SIk ∼ (( Ins3k Sk ⊕ Ins2k SIk Sk ) “k ℘1℘11c) ∩ Ins2k Sk ) “k ℘1℘11c))
“k ℘1℘1℘11c)) ∖ (( Ins2k ◡k(({{∅}} ×k {∅}) ∪ ( ∼ (( Ins2k Sk ⊕ Ins3k (( Ins3k ◡k Sk ∖ Ins2k (( Ins2k (( Nn ×k V) ∩ (( Ins2k SIk Sk ∩ Ins3k (( Ins3k SIk ((℘1c ×k
V) ∖ (( Ins3k Sk ⊕ Ins2k SIk Sk ) “k ℘1℘1℘11c)) ∩ Ins2k Sk ) “k ℘1℘11c))
“k ℘1℘1℘11c)) ⊕
Ins3k Ik )
“k ℘11c))
“k ℘11c))
“k ℘1℘11c) ∖ ({{∅}}
×k V))) ∩ Ins3k (( Ins2k ◡k(({{∅}} ×k {∅}) ∪ ( ∼ (( Ins2k Sk ⊕ Ins3k (( Ins3k ◡k Sk ∖ Ins2k (( Ins2k (( Nn ×k V) ∩ (( Ins2k SIk Sk ∩ Ins3k (( Ins3k SIk ((℘1c ×k
V) ∖ (( Ins3k Sk ⊕ Ins2k SIk Sk ) “k ℘1℘1℘11c)) ∩ Ins2k Sk ) “k ℘1℘11c))
“k ℘1℘1℘11c)) ⊕
Ins3k Ik )
“k ℘11c))
“k ℘11c))
“k ℘1℘11c) ∖ ({{∅}}
×k V))) ∩ Ins3k (( Nn ×k Nn ) ∩ (( Ins3k (( Ins3k SIk ((℘1c ×k
V) ∖ (( Ins3k Sk ⊕ Ins2k SIk Sk ) “k ℘1℘1℘11c)) ∩ Ins2k Sk ) “k ℘1℘11c) ∩ Ins2k (( Ins3k SIk ∼ (( Ins3k Sk ⊕ Ins2k SIk Sk ) “k ℘1℘11c) ∩ Ins2k Sk ) “k ℘1℘11c))
“k ℘1℘1℘11c)))
“k ℘11c))
“k ℘11c)))) |
10 | | df-rex 2621 |
. . . . . . . 8
⊢ (∃t ∈ 1c ⟪t, {m}⟫
∈ ◡k( SIk (( Nn
×k Nn ) ∩ (( Ins3k (( Ins3k SIk ((℘1c ×k
V) ∖ (( Ins3k Sk ⊕ Ins2k SIk Sk ) “k ℘1℘1℘11c)) ∩ Ins2k Sk ) “k ℘1℘11c) ∩ Ins2k (( Ins3k SIk ∼ (( Ins3k Sk ⊕ Ins2k SIk Sk ) “k ℘1℘11c) ∩ Ins2k Sk ) “k ℘1℘11c))
“k ℘1℘1℘11c)) ∖ (( Ins2k ◡k(({{∅}} ×k {∅}) ∪ ( ∼ (( Ins2k Sk ⊕ Ins3k (( Ins3k ◡k Sk ∖ Ins2k (( Ins2k (( Nn ×k V) ∩ (( Ins2k SIk Sk ∩ Ins3k (( Ins3k SIk ((℘1c ×k
V) ∖ (( Ins3k Sk ⊕ Ins2k SIk Sk ) “k ℘1℘1℘11c)) ∩ Ins2k Sk ) “k ℘1℘11c))
“k ℘1℘1℘11c)) ⊕
Ins3k Ik )
“k ℘11c))
“k ℘11c))
“k ℘1℘11c) ∖ ({{∅}}
×k V))) ∩ Ins3k (( Ins2k ◡k(({{∅}} ×k {∅}) ∪ ( ∼ (( Ins2k Sk ⊕ Ins3k (( Ins3k ◡k Sk ∖ Ins2k (( Ins2k (( Nn ×k V) ∩ (( Ins2k SIk Sk ∩ Ins3k (( Ins3k SIk ((℘1c ×k
V) ∖ (( Ins3k Sk ⊕ Ins2k SIk Sk ) “k ℘1℘1℘11c)) ∩ Ins2k Sk ) “k ℘1℘11c))
“k ℘1℘1℘11c)) ⊕
Ins3k Ik )
“k ℘11c))
“k ℘11c))
“k ℘1℘11c) ∖ ({{∅}}
×k V))) ∩ Ins3k (( Nn ×k Nn ) ∩ (( Ins3k (( Ins3k SIk ((℘1c ×k
V) ∖ (( Ins3k Sk ⊕ Ins2k SIk Sk ) “k ℘1℘1℘11c)) ∩ Ins2k Sk ) “k ℘1℘11c) ∩ Ins2k (( Ins3k SIk ∼ (( Ins3k Sk ⊕ Ins2k SIk Sk ) “k ℘1℘11c) ∩ Ins2k Sk ) “k ℘1℘11c))
“k ℘1℘1℘11c)))
“k ℘11c))
“k ℘11c)) ↔ ∃t(t ∈
1c ∧ ⟪t, {m}⟫
∈ ◡k( SIk (( Nn
×k Nn ) ∩ (( Ins3k (( Ins3k SIk ((℘1c ×k
V) ∖ (( Ins3k Sk ⊕ Ins2k SIk Sk ) “k ℘1℘1℘11c)) ∩ Ins2k Sk ) “k ℘1℘11c) ∩ Ins2k (( Ins3k SIk ∼ (( Ins3k Sk ⊕ Ins2k SIk Sk ) “k ℘1℘11c) ∩ Ins2k Sk ) “k ℘1℘11c))
“k ℘1℘1℘11c)) ∖ (( Ins2k ◡k(({{∅}} ×k {∅}) ∪ ( ∼ (( Ins2k Sk ⊕ Ins3k (( Ins3k ◡k Sk ∖ Ins2k (( Ins2k (( Nn ×k V) ∩ (( Ins2k SIk Sk ∩ Ins3k (( Ins3k SIk ((℘1c ×k
V) ∖ (( Ins3k Sk ⊕ Ins2k SIk Sk ) “k ℘1℘1℘11c)) ∩ Ins2k Sk ) “k ℘1℘11c))
“k ℘1℘1℘11c)) ⊕
Ins3k Ik )
“k ℘11c))
“k ℘11c))
“k ℘1℘11c) ∖ ({{∅}}
×k V))) ∩ Ins3k (( Ins2k ◡k(({{∅}} ×k {∅}) ∪ ( ∼ (( Ins2k Sk ⊕ Ins3k (( Ins3k ◡k Sk ∖ Ins2k (( Ins2k (( Nn ×k V) ∩ (( Ins2k SIk Sk ∩ Ins3k (( Ins3k SIk ((℘1c ×k
V) ∖ (( Ins3k Sk ⊕ Ins2k SIk Sk ) “k ℘1℘1℘11c)) ∩ Ins2k Sk ) “k ℘1℘11c))
“k ℘1℘1℘11c)) ⊕
Ins3k Ik )
“k ℘11c))
“k ℘11c))
“k ℘1℘11c) ∖ ({{∅}}
×k V))) ∩ Ins3k (( Nn ×k Nn ) ∩ (( Ins3k (( Ins3k SIk ((℘1c ×k
V) ∖ (( Ins3k Sk ⊕ Ins2k SIk Sk ) “k ℘1℘1℘11c)) ∩ Ins2k Sk ) “k ℘1℘11c) ∩ Ins2k (( Ins3k SIk ∼ (( Ins3k Sk ⊕ Ins2k SIk Sk ) “k ℘1℘11c) ∩ Ins2k Sk ) “k ℘1℘11c))
“k ℘1℘1℘11c)))
“k ℘11c))
“k ℘11c)))) |
11 | | excom 1741 |
. . . . . . . 8
⊢ (∃n∃t(t = {n} ∧ ⟪t,
{m}⟫ ∈ ◡k( SIk (( Nn
×k Nn ) ∩ (( Ins3k (( Ins3k SIk ((℘1c ×k
V) ∖ (( Ins3k Sk ⊕ Ins2k SIk Sk ) “k ℘1℘1℘11c)) ∩ Ins2k Sk ) “k ℘1℘11c) ∩ Ins2k (( Ins3k SIk ∼ (( Ins3k Sk ⊕ Ins2k SIk Sk ) “k ℘1℘11c) ∩ Ins2k Sk ) “k ℘1℘11c))
“k ℘1℘1℘11c)) ∖ (( Ins2k ◡k(({{∅}} ×k {∅}) ∪ ( ∼ (( Ins2k Sk ⊕ Ins3k (( Ins3k ◡k Sk ∖ Ins2k (( Ins2k (( Nn ×k V) ∩ (( Ins2k SIk Sk ∩ Ins3k (( Ins3k SIk ((℘1c ×k
V) ∖ (( Ins3k Sk ⊕ Ins2k SIk Sk ) “k ℘1℘1℘11c)) ∩ Ins2k Sk ) “k ℘1℘11c))
“k ℘1℘1℘11c)) ⊕
Ins3k Ik )
“k ℘11c))
“k ℘11c))
“k ℘1℘11c) ∖ ({{∅}}
×k V))) ∩ Ins3k (( Ins2k ◡k(({{∅}} ×k {∅}) ∪ ( ∼ (( Ins2k Sk ⊕ Ins3k (( Ins3k ◡k Sk ∖ Ins2k (( Ins2k (( Nn ×k V) ∩ (( Ins2k SIk Sk ∩ Ins3k (( Ins3k SIk ((℘1c ×k
V) ∖ (( Ins3k Sk ⊕ Ins2k SIk Sk ) “k ℘1℘1℘11c)) ∩ Ins2k Sk ) “k ℘1℘11c))
“k ℘1℘1℘11c)) ⊕
Ins3k Ik )
“k ℘11c))
“k ℘11c))
“k ℘1℘11c) ∖ ({{∅}}
×k V))) ∩ Ins3k (( Nn ×k Nn ) ∩ (( Ins3k (( Ins3k SIk ((℘1c ×k
V) ∖ (( Ins3k Sk ⊕ Ins2k SIk Sk ) “k ℘1℘1℘11c)) ∩ Ins2k Sk ) “k ℘1℘11c) ∩ Ins2k (( Ins3k SIk ∼ (( Ins3k Sk ⊕ Ins2k SIk Sk ) “k ℘1℘11c) ∩ Ins2k Sk ) “k ℘1℘11c))
“k ℘1℘1℘11c)))
“k ℘11c))
“k ℘11c))) ↔ ∃t∃n(t = {n} ∧ ⟪t,
{m}⟫ ∈ ◡k( SIk (( Nn
×k Nn ) ∩ (( Ins3k (( Ins3k SIk ((℘1c ×k
V) ∖ (( Ins3k Sk ⊕ Ins2k SIk Sk ) “k ℘1℘1℘11c)) ∩ Ins2k Sk ) “k ℘1℘11c) ∩ Ins2k (( Ins3k SIk ∼ (( Ins3k Sk ⊕ Ins2k SIk Sk ) “k ℘1℘11c) ∩ Ins2k Sk ) “k ℘1℘11c))
“k ℘1℘1℘11c)) ∖ (( Ins2k ◡k(({{∅}} ×k {∅}) ∪ ( ∼ (( Ins2k Sk ⊕ Ins3k (( Ins3k ◡k Sk ∖ Ins2k (( Ins2k (( Nn ×k V) ∩ (( Ins2k SIk Sk ∩ Ins3k (( Ins3k SIk ((℘1c ×k
V) ∖ (( Ins3k Sk ⊕ Ins2k SIk Sk ) “k ℘1℘1℘11c)) ∩ Ins2k Sk ) “k ℘1℘11c))
“k ℘1℘1℘11c)) ⊕
Ins3k Ik )
“k ℘11c))
“k ℘11c))
“k ℘1℘11c) ∖ ({{∅}}
×k V))) ∩ Ins3k (( Ins2k ◡k(({{∅}} ×k {∅}) ∪ ( ∼ (( Ins2k Sk ⊕ Ins3k (( Ins3k ◡k Sk ∖ Ins2k (( Ins2k (( Nn ×k V) ∩ (( Ins2k SIk Sk ∩ Ins3k (( Ins3k SIk ((℘1c ×k
V) ∖ (( Ins3k Sk ⊕ Ins2k SIk Sk ) “k ℘1℘1℘11c)) ∩ Ins2k Sk ) “k ℘1℘11c))
“k ℘1℘1℘11c)) ⊕
Ins3k Ik )
“k ℘11c))
“k ℘11c))
“k ℘1℘11c) ∖ ({{∅}}
×k V))) ∩ Ins3k (( Nn ×k Nn ) ∩ (( Ins3k (( Ins3k SIk ((℘1c ×k
V) ∖ (( Ins3k Sk ⊕ Ins2k SIk Sk ) “k ℘1℘1℘11c)) ∩ Ins2k Sk ) “k ℘1℘11c) ∩ Ins2k (( Ins3k SIk ∼ (( Ins3k Sk ⊕ Ins2k SIk Sk ) “k ℘1℘11c) ∩ Ins2k Sk ) “k ℘1℘11c))
“k ℘1℘1℘11c)))
“k ℘11c))
“k ℘11c)))) |
12 | 9, 10, 11 | 3bitr4i 268 |
. . . . . . 7
⊢ (∃t ∈ 1c ⟪t, {m}⟫
∈ ◡k( SIk (( Nn
×k Nn ) ∩ (( Ins3k (( Ins3k SIk ((℘1c ×k
V) ∖ (( Ins3k Sk ⊕ Ins2k SIk Sk ) “k ℘1℘1℘11c)) ∩ Ins2k Sk ) “k ℘1℘11c) ∩ Ins2k (( Ins3k SIk ∼ (( Ins3k Sk ⊕ Ins2k SIk Sk ) “k ℘1℘11c) ∩ Ins2k Sk ) “k ℘1℘11c))
“k ℘1℘1℘11c)) ∖ (( Ins2k ◡k(({{∅}} ×k {∅}) ∪ ( ∼ (( Ins2k Sk ⊕ Ins3k (( Ins3k ◡k Sk ∖ Ins2k (( Ins2k (( Nn ×k V) ∩ (( Ins2k SIk Sk ∩ Ins3k (( Ins3k SIk ((℘1c ×k
V) ∖ (( Ins3k Sk ⊕ Ins2k SIk Sk ) “k ℘1℘1℘11c)) ∩ Ins2k Sk ) “k ℘1℘11c))
“k ℘1℘1℘11c)) ⊕
Ins3k Ik )
“k ℘11c))
“k ℘11c))
“k ℘1℘11c) ∖ ({{∅}}
×k V))) ∩ Ins3k (( Ins2k ◡k(({{∅}} ×k {∅}) ∪ ( ∼ (( Ins2k Sk ⊕ Ins3k (( Ins3k ◡k Sk ∖ Ins2k (( Ins2k (( Nn ×k V) ∩ (( Ins2k SIk Sk ∩ Ins3k (( Ins3k SIk ((℘1c ×k
V) ∖ (( Ins3k Sk ⊕ Ins2k SIk Sk ) “k ℘1℘1℘11c)) ∩ Ins2k Sk ) “k ℘1℘11c))
“k ℘1℘1℘11c)) ⊕
Ins3k Ik )
“k ℘11c))
“k ℘11c))
“k ℘1℘11c) ∖ ({{∅}}
×k V))) ∩ Ins3k (( Nn ×k Nn ) ∩ (( Ins3k (( Ins3k SIk ((℘1c ×k
V) ∖ (( Ins3k Sk ⊕ Ins2k SIk Sk ) “k ℘1℘1℘11c)) ∩ Ins2k Sk ) “k ℘1℘11c) ∩ Ins2k (( Ins3k SIk ∼ (( Ins3k Sk ⊕ Ins2k SIk Sk ) “k ℘1℘11c) ∩ Ins2k Sk ) “k ℘1℘11c))
“k ℘1℘1℘11c)))
“k ℘11c))
“k ℘11c)) ↔ ∃n∃t(t = {n} ∧ ⟪t,
{m}⟫ ∈ ◡k( SIk (( Nn
×k Nn ) ∩ (( Ins3k (( Ins3k SIk ((℘1c ×k
V) ∖ (( Ins3k Sk ⊕ Ins2k SIk Sk ) “k ℘1℘1℘11c)) ∩ Ins2k Sk ) “k ℘1℘11c) ∩ Ins2k (( Ins3k SIk ∼ (( Ins3k Sk ⊕ Ins2k SIk Sk ) “k ℘1℘11c) ∩ Ins2k Sk ) “k ℘1℘11c))
“k ℘1℘1℘11c)) ∖ (( Ins2k ◡k(({{∅}} ×k {∅}) ∪ ( ∼ (( Ins2k Sk ⊕ Ins3k (( Ins3k ◡k Sk ∖ Ins2k (( Ins2k (( Nn ×k V) ∩ (( Ins2k SIk Sk ∩ Ins3k (( Ins3k SIk ((℘1c ×k
V) ∖ (( Ins3k Sk ⊕ Ins2k SIk Sk ) “k ℘1℘1℘11c)) ∩ Ins2k Sk ) “k ℘1℘11c))
“k ℘1℘1℘11c)) ⊕
Ins3k Ik )
“k ℘11c))
“k ℘11c))
“k ℘1℘11c) ∖ ({{∅}}
×k V))) ∩ Ins3k (( Ins2k ◡k(({{∅}} ×k {∅}) ∪ ( ∼ (( Ins2k Sk ⊕ Ins3k (( Ins3k ◡k Sk ∖ Ins2k (( Ins2k (( Nn ×k V) ∩ (( Ins2k SIk Sk ∩ Ins3k (( Ins3k SIk ((℘1c ×k
V) ∖ (( Ins3k Sk ⊕ Ins2k SIk Sk ) “k ℘1℘1℘11c)) ∩ Ins2k Sk ) “k ℘1℘11c))
“k ℘1℘1℘11c)) ⊕
Ins3k Ik )
“k ℘11c))
“k ℘11c))
“k ℘1℘11c) ∖ ({{∅}}
×k V))) ∩ Ins3k (( Nn ×k Nn ) ∩ (( Ins3k (( Ins3k SIk ((℘1c ×k
V) ∖ (( Ins3k Sk ⊕ Ins2k SIk Sk ) “k ℘1℘1℘11c)) ∩ Ins2k Sk ) “k ℘1℘11c) ∩ Ins2k (( Ins3k SIk ∼ (( Ins3k Sk ⊕ Ins2k SIk Sk ) “k ℘1℘11c) ∩ Ins2k Sk ) “k ℘1℘11c))
“k ℘1℘1℘11c)))
“k ℘11c))
“k ℘11c)))) |
13 | | snex 4112 |
. . . . . . . . . 10
⊢ {n} ∈
V |
14 | | opkeq1 4060 |
. . . . . . . . . . 11
⊢ (t = {n} →
⟪t, {m}⟫ = ⟪{n}, {m}⟫) |
15 | 14 | eleq1d 2419 |
. . . . . . . . . 10
⊢ (t = {n} →
(⟪t, {m}⟫ ∈ ◡k( SIk (( Nn
×k Nn ) ∩ (( Ins3k (( Ins3k SIk ((℘1c ×k
V) ∖ (( Ins3k Sk ⊕ Ins2k SIk Sk ) “k ℘1℘1℘11c)) ∩ Ins2k Sk ) “k ℘1℘11c) ∩ Ins2k (( Ins3k SIk ∼ (( Ins3k Sk ⊕ Ins2k SIk Sk ) “k ℘1℘11c) ∩ Ins2k Sk ) “k ℘1℘11c))
“k ℘1℘1℘11c)) ∖ (( Ins2k ◡k(({{∅}} ×k {∅}) ∪ ( ∼ (( Ins2k Sk ⊕ Ins3k (( Ins3k ◡k Sk ∖ Ins2k (( Ins2k (( Nn ×k V) ∩ (( Ins2k SIk Sk ∩ Ins3k (( Ins3k SIk ((℘1c ×k
V) ∖ (( Ins3k Sk ⊕ Ins2k SIk Sk ) “k ℘1℘1℘11c)) ∩ Ins2k Sk ) “k ℘1℘11c))
“k ℘1℘1℘11c)) ⊕
Ins3k Ik )
“k ℘11c))
“k ℘11c))
“k ℘1℘11c) ∖ ({{∅}}
×k V))) ∩ Ins3k (( Ins2k ◡k(({{∅}} ×k {∅}) ∪ ( ∼ (( Ins2k Sk ⊕ Ins3k (( Ins3k ◡k Sk ∖ Ins2k (( Ins2k (( Nn ×k V) ∩ (( Ins2k SIk Sk ∩ Ins3k (( Ins3k SIk ((℘1c ×k
V) ∖ (( Ins3k Sk ⊕ Ins2k SIk Sk ) “k ℘1℘1℘11c)) ∩ Ins2k Sk ) “k ℘1℘11c))
“k ℘1℘1℘11c)) ⊕
Ins3k Ik )
“k ℘11c))
“k ℘11c))
“k ℘1℘11c) ∖ ({{∅}}
×k V))) ∩ Ins3k (( Nn ×k Nn ) ∩ (( Ins3k (( Ins3k SIk ((℘1c ×k
V) ∖ (( Ins3k Sk ⊕ Ins2k SIk Sk ) “k ℘1℘1℘11c)) ∩ Ins2k Sk ) “k ℘1℘11c) ∩ Ins2k (( Ins3k SIk ∼ (( Ins3k Sk ⊕ Ins2k SIk Sk ) “k ℘1℘11c) ∩ Ins2k Sk ) “k ℘1℘11c))
“k ℘1℘1℘11c)))
“k ℘11c))
“k ℘11c)) ↔
⟪{n}, {m}⟫ ∈ ◡k( SIk (( Nn
×k Nn ) ∩ (( Ins3k (( Ins3k SIk ((℘1c ×k
V) ∖ (( Ins3k Sk ⊕ Ins2k SIk Sk ) “k ℘1℘1℘11c)) ∩ Ins2k Sk ) “k ℘1℘11c) ∩ Ins2k (( Ins3k SIk ∼ (( Ins3k Sk ⊕ Ins2k SIk Sk ) “k ℘1℘11c) ∩ Ins2k Sk ) “k ℘1℘11c))
“k ℘1℘1℘11c)) ∖ (( Ins2k ◡k(({{∅}} ×k {∅}) ∪ ( ∼ (( Ins2k Sk ⊕ Ins3k (( Ins3k ◡k Sk ∖ Ins2k (( Ins2k (( Nn ×k V) ∩ (( Ins2k SIk Sk ∩ Ins3k (( Ins3k SIk ((℘1c ×k
V) ∖ (( Ins3k Sk ⊕ Ins2k SIk Sk ) “k ℘1℘1℘11c)) ∩ Ins2k Sk ) “k ℘1℘11c))
“k ℘1℘1℘11c)) ⊕
Ins3k Ik )
“k ℘11c))
“k ℘11c))
“k ℘1℘11c) ∖ ({{∅}}
×k V))) ∩ Ins3k (( Ins2k ◡k(({{∅}} ×k {∅}) ∪ ( ∼ (( Ins2k Sk ⊕ Ins3k (( Ins3k ◡k Sk ∖ Ins2k (( Ins2k (( Nn ×k V) ∩ (( Ins2k SIk Sk ∩ Ins3k (( Ins3k SIk ((℘1c ×k
V) ∖ (( Ins3k Sk ⊕ Ins2k SIk Sk ) “k ℘1℘1℘11c)) ∩ Ins2k Sk ) “k ℘1℘11c))
“k ℘1℘1℘11c)) ⊕
Ins3k Ik )
“k ℘11c))
“k ℘11c))
“k ℘1℘11c) ∖ ({{∅}}
×k V))) ∩ Ins3k (( Nn ×k Nn ) ∩ (( Ins3k (( Ins3k SIk ((℘1c ×k
V) ∖ (( Ins3k Sk ⊕ Ins2k SIk Sk ) “k ℘1℘1℘11c)) ∩ Ins2k Sk ) “k ℘1℘11c) ∩ Ins2k (( Ins3k SIk ∼ (( Ins3k Sk ⊕ Ins2k SIk Sk ) “k ℘1℘11c) ∩ Ins2k Sk ) “k ℘1℘11c))
“k ℘1℘1℘11c)))
“k ℘11c))
“k ℘11c)))) |
16 | 13, 15 | ceqsexv 2895 |
. . . . . . . . 9
⊢ (∃t(t = {n} ∧ ⟪t,
{m}⟫ ∈ ◡k( SIk (( Nn
×k Nn ) ∩ (( Ins3k (( Ins3k SIk ((℘1c ×k
V) ∖ (( Ins3k Sk ⊕ Ins2k SIk Sk ) “k ℘1℘1℘11c)) ∩ Ins2k Sk ) “k ℘1℘11c) ∩ Ins2k (( Ins3k SIk ∼ (( Ins3k Sk ⊕ Ins2k SIk Sk ) “k ℘1℘11c) ∩ Ins2k Sk ) “k ℘1℘11c))
“k ℘1℘1℘11c)) ∖ (( Ins2k ◡k(({{∅}} ×k {∅}) ∪ ( ∼ (( Ins2k Sk ⊕ Ins3k (( Ins3k ◡k Sk ∖ Ins2k (( Ins2k (( Nn ×k V) ∩ (( Ins2k SIk Sk ∩ Ins3k (( Ins3k SIk ((℘1c ×k
V) ∖ (( Ins3k Sk ⊕ Ins2k SIk Sk ) “k ℘1℘1℘11c)) ∩ Ins2k Sk ) “k ℘1℘11c))
“k ℘1℘1℘11c)) ⊕
Ins3k Ik )
“k ℘11c))
“k ℘11c))
“k ℘1℘11c) ∖ ({{∅}}
×k V))) ∩ Ins3k (( Ins2k ◡k(({{∅}} ×k {∅}) ∪ ( ∼ (( Ins2k Sk ⊕ Ins3k (( Ins3k ◡k Sk ∖ Ins2k (( Ins2k (( Nn ×k V) ∩ (( Ins2k SIk Sk ∩ Ins3k (( Ins3k SIk ((℘1c ×k
V) ∖ (( Ins3k Sk ⊕ Ins2k SIk Sk ) “k ℘1℘1℘11c)) ∩ Ins2k Sk ) “k ℘1℘11c))
“k ℘1℘1℘11c)) ⊕
Ins3k Ik )
“k ℘11c))
“k ℘11c))
“k ℘1℘11c) ∖ ({{∅}}
×k V))) ∩ Ins3k (( Nn ×k Nn ) ∩ (( Ins3k (( Ins3k SIk ((℘1c ×k
V) ∖ (( Ins3k Sk ⊕ Ins2k SIk Sk ) “k ℘1℘1℘11c)) ∩ Ins2k Sk ) “k ℘1℘11c) ∩ Ins2k (( Ins3k SIk ∼ (( Ins3k Sk ⊕ Ins2k SIk Sk ) “k ℘1℘11c) ∩ Ins2k Sk ) “k ℘1℘11c))
“k ℘1℘1℘11c)))
“k ℘11c))
“k ℘11c))) ↔
⟪{n}, {m}⟫ ∈ ◡k( SIk (( Nn
×k Nn ) ∩ (( Ins3k (( Ins3k SIk ((℘1c ×k
V) ∖ (( Ins3k Sk ⊕ Ins2k SIk Sk ) “k ℘1℘1℘11c)) ∩ Ins2k Sk ) “k ℘1℘11c) ∩ Ins2k (( Ins3k SIk ∼ (( Ins3k Sk ⊕ Ins2k SIk Sk ) “k ℘1℘11c) ∩ Ins2k Sk ) “k ℘1℘11c))
“k ℘1℘1℘11c)) ∖ (( Ins2k ◡k(({{∅}} ×k {∅}) ∪ ( ∼ (( Ins2k Sk ⊕ Ins3k (( Ins3k ◡k Sk ∖ Ins2k (( Ins2k (( Nn ×k V) ∩ (( Ins2k SIk Sk ∩ Ins3k (( Ins3k SIk ((℘1c ×k
V) ∖ (( Ins3k Sk ⊕ Ins2k SIk Sk ) “k ℘1℘1℘11c)) ∩ Ins2k Sk ) “k ℘1℘11c))
“k ℘1℘1℘11c)) ⊕
Ins3k Ik )
“k ℘11c))
“k ℘11c))
“k ℘1℘11c) ∖ ({{∅}}
×k V))) ∩ Ins3k (( Ins2k ◡k(({{∅}} ×k {∅}) ∪ ( ∼ (( Ins2k Sk ⊕ Ins3k (( Ins3k ◡k Sk ∖ Ins2k (( Ins2k (( Nn ×k V) ∩ (( Ins2k SIk Sk ∩ Ins3k (( Ins3k SIk ((℘1c ×k
V) ∖ (( Ins3k Sk ⊕ Ins2k SIk Sk ) “k ℘1℘1℘11c)) ∩ Ins2k Sk ) “k ℘1℘11c))
“k ℘1℘1℘11c)) ⊕
Ins3k Ik )
“k ℘11c))
“k ℘11c))
“k ℘1℘11c) ∖ ({{∅}}
×k V))) ∩ Ins3k (( Nn ×k Nn ) ∩ (( Ins3k (( Ins3k SIk ((℘1c ×k
V) ∖ (( Ins3k Sk ⊕ Ins2k SIk Sk ) “k ℘1℘1℘11c)) ∩ Ins2k Sk ) “k ℘1℘11c) ∩ Ins2k (( Ins3k SIk ∼ (( Ins3k Sk ⊕ Ins2k SIk Sk ) “k ℘1℘11c) ∩ Ins2k Sk ) “k ℘1℘11c))
“k ℘1℘1℘11c)))
“k ℘11c))
“k ℘11c))) |
17 | 13, 3 | opkelcnvk 4251 |
. . . . . . . . 9
⊢ (⟪{n}, {m}⟫
∈ ◡k( SIk (( Nn
×k Nn ) ∩ (( Ins3k (( Ins3k SIk ((℘1c ×k
V) ∖ (( Ins3k Sk ⊕ Ins2k SIk Sk ) “k ℘1℘1℘11c)) ∩ Ins2k Sk ) “k ℘1℘11c) ∩ Ins2k (( Ins3k SIk ∼ (( Ins3k Sk ⊕ Ins2k SIk Sk ) “k ℘1℘11c) ∩ Ins2k Sk ) “k ℘1℘11c))
“k ℘1℘1℘11c)) ∖ (( Ins2k ◡k(({{∅}} ×k {∅}) ∪ ( ∼ (( Ins2k Sk ⊕ Ins3k (( Ins3k ◡k Sk ∖ Ins2k (( Ins2k (( Nn ×k V) ∩ (( Ins2k SIk Sk ∩ Ins3k (( Ins3k SIk ((℘1c ×k
V) ∖ (( Ins3k Sk ⊕ Ins2k SIk Sk ) “k ℘1℘1℘11c)) ∩ Ins2k Sk ) “k ℘1℘11c))
“k ℘1℘1℘11c)) ⊕
Ins3k Ik )
“k ℘11c))
“k ℘11c))
“k ℘1℘11c) ∖ ({{∅}}
×k V))) ∩ Ins3k (( Ins2k ◡k(({{∅}} ×k {∅}) ∪ ( ∼ (( Ins2k Sk ⊕ Ins3k (( Ins3k ◡k Sk ∖ Ins2k (( Ins2k (( Nn ×k V) ∩ (( Ins2k SIk Sk ∩ Ins3k (( Ins3k SIk ((℘1c ×k
V) ∖ (( Ins3k Sk ⊕ Ins2k SIk Sk ) “k ℘1℘1℘11c)) ∩ Ins2k Sk ) “k ℘1℘11c))
“k ℘1℘1℘11c)) ⊕
Ins3k Ik )
“k ℘11c))
“k ℘11c))
“k ℘1℘11c) ∖ ({{∅}}
×k V))) ∩ Ins3k (( Nn ×k Nn ) ∩ (( Ins3k (( Ins3k SIk ((℘1c ×k
V) ∖ (( Ins3k Sk ⊕ Ins2k SIk Sk ) “k ℘1℘1℘11c)) ∩ Ins2k Sk ) “k ℘1℘11c) ∩ Ins2k (( Ins3k SIk ∼ (( Ins3k Sk ⊕ Ins2k SIk Sk ) “k ℘1℘11c) ∩ Ins2k Sk ) “k ℘1℘11c))
“k ℘1℘1℘11c)))
“k ℘11c))
“k ℘11c)) ↔
⟪{m}, {n}⟫ ∈ (
SIk (( Nn ×k Nn ) ∩ (( Ins3k (( Ins3k SIk ((℘1c ×k
V) ∖ (( Ins3k Sk ⊕ Ins2k SIk Sk ) “k ℘1℘1℘11c)) ∩ Ins2k Sk ) “k ℘1℘11c) ∩ Ins2k (( Ins3k SIk ∼ (( Ins3k Sk ⊕ Ins2k SIk Sk ) “k ℘1℘11c) ∩ Ins2k Sk ) “k ℘1℘11c))
“k ℘1℘1℘11c)) ∖ (( Ins2k ◡k(({{∅}} ×k {∅}) ∪ ( ∼ (( Ins2k Sk ⊕ Ins3k (( Ins3k ◡k Sk ∖ Ins2k (( Ins2k (( Nn ×k V) ∩ (( Ins2k SIk Sk ∩ Ins3k (( Ins3k SIk ((℘1c ×k
V) ∖ (( Ins3k Sk ⊕ Ins2k SIk Sk ) “k ℘1℘1℘11c)) ∩ Ins2k Sk ) “k ℘1℘11c))
“k ℘1℘1℘11c)) ⊕
Ins3k Ik )
“k ℘11c))
“k ℘11c))
“k ℘1℘11c) ∖ ({{∅}}
×k V))) ∩ Ins3k (( Ins2k ◡k(({{∅}} ×k {∅}) ∪ ( ∼ (( Ins2k Sk ⊕ Ins3k (( Ins3k ◡k Sk ∖ Ins2k (( Ins2k (( Nn ×k V) ∩ (( Ins2k SIk Sk ∩ Ins3k (( Ins3k SIk ((℘1c ×k
V) ∖ (( Ins3k Sk ⊕ Ins2k SIk Sk ) “k ℘1℘1℘11c)) ∩ Ins2k Sk ) “k ℘1℘11c))
“k ℘1℘1℘11c)) ⊕
Ins3k Ik )
“k ℘11c))
“k ℘11c))
“k ℘1℘11c) ∖ ({{∅}}
×k V))) ∩ Ins3k (( Nn ×k Nn ) ∩ (( Ins3k (( Ins3k SIk ((℘1c ×k
V) ∖ (( Ins3k Sk ⊕ Ins2k SIk Sk ) “k ℘1℘1℘11c)) ∩ Ins2k Sk ) “k ℘1℘11c) ∩ Ins2k (( Ins3k SIk ∼ (( Ins3k Sk ⊕ Ins2k SIk Sk ) “k ℘1℘11c) ∩ Ins2k Sk ) “k ℘1℘11c))
“k ℘1℘1℘11c)))
“k ℘11c))
“k ℘11c))) |
18 | | eldif 3222 |
. . . . . . . . . 10
⊢ (⟪{m}, {n}⟫
∈ ( SIk (( Nn
×k Nn ) ∩ (( Ins3k (( Ins3k SIk ((℘1c ×k
V) ∖ (( Ins3k Sk ⊕ Ins2k SIk Sk ) “k ℘1℘1℘11c)) ∩ Ins2k Sk ) “k ℘1℘11c) ∩ Ins2k (( Ins3k SIk ∼ (( Ins3k Sk ⊕ Ins2k SIk Sk ) “k ℘1℘11c) ∩ Ins2k Sk ) “k ℘1℘11c))
“k ℘1℘1℘11c)) ∖ (( Ins2k ◡k(({{∅}} ×k {∅}) ∪ ( ∼ (( Ins2k Sk ⊕ Ins3k (( Ins3k ◡k Sk ∖ Ins2k (( Ins2k (( Nn ×k V) ∩ (( Ins2k SIk Sk ∩ Ins3k (( Ins3k SIk ((℘1c ×k
V) ∖ (( Ins3k Sk ⊕ Ins2k SIk Sk ) “k ℘1℘1℘11c)) ∩ Ins2k Sk ) “k ℘1℘11c))
“k ℘1℘1℘11c)) ⊕
Ins3k Ik )
“k ℘11c))
“k ℘11c))
“k ℘1℘11c) ∖ ({{∅}}
×k V))) ∩ Ins3k (( Ins2k ◡k(({{∅}} ×k {∅}) ∪ ( ∼ (( Ins2k Sk ⊕ Ins3k (( Ins3k ◡k Sk ∖ Ins2k (( Ins2k (( Nn ×k V) ∩ (( Ins2k SIk Sk ∩ Ins3k (( Ins3k SIk ((℘1c ×k
V) ∖ (( Ins3k Sk ⊕ Ins2k SIk Sk ) “k ℘1℘1℘11c)) ∩ Ins2k Sk ) “k ℘1℘11c))
“k ℘1℘1℘11c)) ⊕
Ins3k Ik )
“k ℘11c))
“k ℘11c))
“k ℘1℘11c) ∖ ({{∅}}
×k V))) ∩ Ins3k (( Nn ×k Nn ) ∩ (( Ins3k (( Ins3k SIk ((℘1c ×k
V) ∖ (( Ins3k Sk ⊕ Ins2k SIk Sk ) “k ℘1℘1℘11c)) ∩ Ins2k Sk ) “k ℘1℘11c) ∩ Ins2k (( Ins3k SIk ∼ (( Ins3k Sk ⊕ Ins2k SIk Sk ) “k ℘1℘11c) ∩ Ins2k Sk ) “k ℘1℘11c))
“k ℘1℘1℘11c)))
“k ℘11c))
“k ℘11c)) ↔
(⟪{m}, {n}⟫ ∈ SIk (( Nn
×k Nn ) ∩ (( Ins3k (( Ins3k SIk ((℘1c ×k
V) ∖ (( Ins3k Sk ⊕ Ins2k SIk Sk ) “k ℘1℘1℘11c)) ∩ Ins2k Sk ) “k ℘1℘11c) ∩ Ins2k (( Ins3k SIk ∼ (( Ins3k Sk ⊕ Ins2k SIk Sk ) “k ℘1℘11c) ∩ Ins2k Sk ) “k ℘1℘11c))
“k ℘1℘1℘11c)) ∧ ¬ ⟪{m}, {n}⟫
∈ (( Ins2k ◡k(({{∅}} ×k {∅}) ∪ ( ∼ (( Ins2k Sk ⊕ Ins3k (( Ins3k ◡k Sk ∖ Ins2k (( Ins2k (( Nn ×k V) ∩ (( Ins2k SIk Sk ∩ Ins3k (( Ins3k SIk ((℘1c ×k
V) ∖ (( Ins3k Sk ⊕ Ins2k SIk Sk ) “k ℘1℘1℘11c)) ∩ Ins2k Sk ) “k ℘1℘11c))
“k ℘1℘1℘11c)) ⊕
Ins3k Ik )
“k ℘11c))
“k ℘11c))
“k ℘1℘11c) ∖ ({{∅}}
×k V))) ∩ Ins3k (( Ins2k ◡k(({{∅}} ×k {∅}) ∪ ( ∼ (( Ins2k Sk ⊕ Ins3k (( Ins3k ◡k Sk ∖ Ins2k (( Ins2k (( Nn ×k V) ∩ (( Ins2k SIk Sk ∩ Ins3k (( Ins3k SIk ((℘1c ×k
V) ∖ (( Ins3k Sk ⊕ Ins2k SIk Sk ) “k ℘1℘1℘11c)) ∩ Ins2k Sk ) “k ℘1℘11c))
“k ℘1℘1℘11c)) ⊕
Ins3k Ik )
“k ℘11c))
“k ℘11c))
“k ℘1℘11c) ∖ ({{∅}}
×k V))) ∩ Ins3k (( Nn ×k Nn ) ∩ (( Ins3k (( Ins3k SIk ((℘1c ×k
V) ∖ (( Ins3k Sk ⊕ Ins2k SIk Sk ) “k ℘1℘1℘11c)) ∩ Ins2k Sk ) “k ℘1℘11c) ∩ Ins2k (( Ins3k SIk ∼ (( Ins3k Sk ⊕ Ins2k SIk Sk ) “k ℘1℘11c) ∩ Ins2k Sk ) “k ℘1℘11c))
“k ℘1℘1℘11c)))
“k ℘11c))
“k ℘11c))) |
19 | | vex 2863 |
. . . . . . . . . . . . 13
⊢ n ∈
V |
20 | 1, 19 | opksnelsik 4266 |
. . . . . . . . . . . 12
⊢ (⟪{m}, {n}⟫
∈ SIk (( Nn
×k Nn ) ∩ (( Ins3k (( Ins3k SIk ((℘1c ×k
V) ∖ (( Ins3k Sk ⊕ Ins2k SIk Sk ) “k ℘1℘1℘11c)) ∩ Ins2k Sk ) “k ℘1℘11c) ∩ Ins2k (( Ins3k SIk ∼ (( Ins3k Sk ⊕ Ins2k SIk Sk ) “k ℘1℘11c) ∩ Ins2k Sk ) “k ℘1℘11c))
“k ℘1℘1℘11c)) ↔
⟪m, n⟫ ∈ ((
Nn ×k Nn ) ∩ (( Ins3k (( Ins3k SIk ((℘1c ×k
V) ∖ (( Ins3k Sk ⊕ Ins2k SIk Sk ) “k ℘1℘1℘11c)) ∩ Ins2k Sk ) “k ℘1℘11c) ∩ Ins2k (( Ins3k SIk ∼ (( Ins3k Sk ⊕ Ins2k SIk Sk ) “k ℘1℘11c) ∩ Ins2k Sk ) “k ℘1℘11c))
“k ℘1℘1℘11c))) |
21 | 1, 19 | srelk 4525 |
. . . . . . . . . . . 12
⊢ (⟪m, n⟫
∈ (( Nn
×k Nn ) ∩ (( Ins3k (( Ins3k SIk ((℘1c ×k
V) ∖ (( Ins3k Sk ⊕ Ins2k SIk Sk ) “k ℘1℘1℘11c)) ∩ Ins2k Sk ) “k ℘1℘11c) ∩ Ins2k (( Ins3k SIk ∼ (( Ins3k Sk ⊕ Ins2k SIk Sk ) “k ℘1℘11c) ∩ Ins2k Sk ) “k ℘1℘11c))
“k ℘1℘1℘11c)) ↔ Sfin (m,
n)) |
22 | 20, 21 | bitri 240 |
. . . . . . . . . . 11
⊢ (⟪{m}, {n}⟫
∈ SIk (( Nn
×k Nn ) ∩ (( Ins3k (( Ins3k SIk ((℘1c ×k
V) ∖ (( Ins3k Sk ⊕ Ins2k SIk Sk ) “k ℘1℘1℘11c)) ∩ Ins2k Sk ) “k ℘1℘11c) ∩ Ins2k (( Ins3k SIk ∼ (( Ins3k Sk ⊕ Ins2k SIk Sk ) “k ℘1℘11c) ∩ Ins2k Sk ) “k ℘1℘11c))
“k ℘1℘1℘11c)) ↔ Sfin (m,
n)) |
23 | | opkex 4114 |
. . . . . . . . . . . . . . 15
⊢ ⟪{m}, {n}⟫
∈ V |
24 | 23 | elimak 4260 |
. . . . . . . . . . . . . 14
⊢ (⟪{m}, {n}⟫
∈ (( Ins2k ◡k(({{∅}} ×k {∅}) ∪ ( ∼ (( Ins2k Sk ⊕ Ins3k (( Ins3k ◡k Sk ∖ Ins2k (( Ins2k (( Nn ×k V) ∩ (( Ins2k SIk Sk ∩ Ins3k (( Ins3k SIk ((℘1c ×k
V) ∖ (( Ins3k Sk ⊕ Ins2k SIk Sk ) “k ℘1℘1℘11c)) ∩ Ins2k Sk ) “k ℘1℘11c))
“k ℘1℘1℘11c)) ⊕
Ins3k Ik )
“k ℘11c))
“k ℘11c))
“k ℘1℘11c) ∖ ({{∅}}
×k V))) ∩ Ins3k (( Ins2k ◡k(({{∅}} ×k {∅}) ∪ ( ∼ (( Ins2k Sk ⊕ Ins3k (( Ins3k ◡k Sk ∖ Ins2k (( Ins2k (( Nn ×k V) ∩ (( Ins2k SIk Sk ∩ Ins3k (( Ins3k SIk ((℘1c ×k
V) ∖ (( Ins3k Sk ⊕ Ins2k SIk Sk ) “k ℘1℘1℘11c)) ∩ Ins2k Sk ) “k ℘1℘11c))
“k ℘1℘1℘11c)) ⊕
Ins3k Ik )
“k ℘11c))
“k ℘11c))
“k ℘1℘11c) ∖ ({{∅}}
×k V))) ∩ Ins3k (( Nn ×k Nn ) ∩ (( Ins3k (( Ins3k SIk ((℘1c ×k
V) ∖ (( Ins3k Sk ⊕ Ins2k SIk Sk ) “k ℘1℘1℘11c)) ∩ Ins2k Sk ) “k ℘1℘11c) ∩ Ins2k (( Ins3k SIk ∼ (( Ins3k Sk ⊕ Ins2k SIk Sk ) “k ℘1℘11c) ∩ Ins2k Sk ) “k ℘1℘11c))
“k ℘1℘1℘11c)))
“k ℘11c))
“k ℘11c) ↔ ∃t ∈ ℘1
1c⟪t,
⟪{m}, {n}⟫⟫ ∈ ( Ins2k ◡k(({{∅}} ×k {∅}) ∪ ( ∼ (( Ins2k Sk ⊕ Ins3k (( Ins3k ◡k Sk ∖ Ins2k (( Ins2k (( Nn ×k V) ∩ (( Ins2k SIk Sk ∩ Ins3k (( Ins3k SIk ((℘1c ×k
V) ∖ (( Ins3k Sk ⊕ Ins2k SIk Sk ) “k ℘1℘1℘11c)) ∩ Ins2k Sk ) “k ℘1℘11c))
“k ℘1℘1℘11c)) ⊕
Ins3k Ik )
“k ℘11c))
“k ℘11c))
“k ℘1℘11c) ∖ ({{∅}}
×k V))) ∩ Ins3k (( Ins2k ◡k(({{∅}} ×k {∅}) ∪ ( ∼ (( Ins2k Sk ⊕ Ins3k (( Ins3k ◡k Sk ∖ Ins2k (( Ins2k (( Nn ×k V) ∩ (( Ins2k SIk Sk ∩ Ins3k (( Ins3k SIk ((℘1c ×k
V) ∖ (( Ins3k Sk ⊕ Ins2k SIk Sk ) “k ℘1℘1℘11c)) ∩ Ins2k Sk ) “k ℘1℘11c))
“k ℘1℘1℘11c)) ⊕
Ins3k Ik )
“k ℘11c))
“k ℘11c))
“k ℘1℘11c) ∖ ({{∅}}
×k V))) ∩ Ins3k (( Nn ×k Nn ) ∩ (( Ins3k (( Ins3k SIk ((℘1c ×k
V) ∖ (( Ins3k Sk ⊕ Ins2k SIk Sk ) “k ℘1℘1℘11c)) ∩ Ins2k Sk ) “k ℘1℘11c) ∩ Ins2k (( Ins3k SIk ∼ (( Ins3k Sk ⊕ Ins2k SIk Sk ) “k ℘1℘11c) ∩ Ins2k Sk ) “k ℘1℘11c))
“k ℘1℘1℘11c)))
“k ℘11c))) |
25 | | df-rex 2621 |
. . . . . . . . . . . . . 14
⊢ (∃t ∈ ℘1
1c⟪t,
⟪{m}, {n}⟫⟫ ∈ ( Ins2k ◡k(({{∅}} ×k {∅}) ∪ ( ∼ (( Ins2k Sk ⊕ Ins3k (( Ins3k ◡k Sk ∖ Ins2k (( Ins2k (( Nn ×k V) ∩ (( Ins2k SIk Sk ∩ Ins3k (( Ins3k SIk ((℘1c ×k
V) ∖ (( Ins3k Sk ⊕ Ins2k SIk Sk ) “k ℘1℘1℘11c)) ∩ Ins2k Sk ) “k ℘1℘11c))
“k ℘1℘1℘11c)) ⊕
Ins3k Ik )
“k ℘11c))
“k ℘11c))
“k ℘1℘11c) ∖ ({{∅}}
×k V))) ∩ Ins3k (( Ins2k ◡k(({{∅}} ×k {∅}) ∪ ( ∼ (( Ins2k Sk ⊕ Ins3k (( Ins3k ◡k Sk ∖ Ins2k (( Ins2k (( Nn ×k V) ∩ (( Ins2k SIk Sk ∩ Ins3k (( Ins3k SIk ((℘1c ×k
V) ∖ (( Ins3k Sk ⊕ Ins2k SIk Sk ) “k ℘1℘1℘11c)) ∩ Ins2k Sk ) “k ℘1℘11c))
“k ℘1℘1℘11c)) ⊕
Ins3k Ik )
“k ℘11c))
“k ℘11c))
“k ℘1℘11c) ∖ ({{∅}}
×k V))) ∩ Ins3k (( Nn ×k Nn ) ∩ (( Ins3k (( Ins3k SIk ((℘1c ×k
V) ∖ (( Ins3k Sk ⊕ Ins2k SIk Sk ) “k ℘1℘1℘11c)) ∩ Ins2k Sk ) “k ℘1℘11c) ∩ Ins2k (( Ins3k SIk ∼ (( Ins3k Sk ⊕ Ins2k SIk Sk ) “k ℘1℘11c) ∩ Ins2k Sk ) “k ℘1℘11c))
“k ℘1℘1℘11c)))
“k ℘11c)) ↔ ∃t(t ∈ ℘11c ∧ ⟪t,
⟪{m}, {n}⟫⟫ ∈ ( Ins2k ◡k(({{∅}} ×k {∅}) ∪ ( ∼ (( Ins2k Sk ⊕ Ins3k (( Ins3k ◡k Sk ∖ Ins2k (( Ins2k (( Nn ×k V) ∩ (( Ins2k SIk Sk ∩ Ins3k (( Ins3k SIk ((℘1c ×k
V) ∖ (( Ins3k Sk ⊕ Ins2k SIk Sk ) “k ℘1℘1℘11c)) ∩ Ins2k Sk ) “k ℘1℘11c))
“k ℘1℘1℘11c)) ⊕
Ins3k Ik )
“k ℘11c))
“k ℘11c))
“k ℘1℘11c) ∖ ({{∅}}
×k V))) ∩ Ins3k (( Ins2k ◡k(({{∅}} ×k {∅}) ∪ ( ∼ (( Ins2k Sk ⊕ Ins3k (( Ins3k ◡k Sk ∖ Ins2k (( Ins2k (( Nn ×k V) ∩ (( Ins2k SIk Sk ∩ Ins3k (( Ins3k SIk ((℘1c ×k
V) ∖ (( Ins3k Sk ⊕ Ins2k SIk Sk ) “k ℘1℘1℘11c)) ∩ Ins2k Sk ) “k ℘1℘11c))
“k ℘1℘1℘11c)) ⊕
Ins3k Ik )
“k ℘11c))
“k ℘11c))
“k ℘1℘11c) ∖ ({{∅}}
×k V))) ∩ Ins3k (( Nn ×k Nn ) ∩ (( Ins3k (( Ins3k SIk ((℘1c ×k
V) ∖ (( Ins3k Sk ⊕ Ins2k SIk Sk ) “k ℘1℘1℘11c)) ∩ Ins2k Sk ) “k ℘1℘11c) ∩ Ins2k (( Ins3k SIk ∼ (( Ins3k Sk ⊕ Ins2k SIk Sk ) “k ℘1℘11c) ∩ Ins2k Sk ) “k ℘1℘11c))
“k ℘1℘1℘11c)))
“k ℘11c)))) |
26 | | elpw11c 4148 |
. . . . . . . . . . . . . . . . . 18
⊢ (t ∈ ℘11c ↔ ∃y t = {{y}}) |
27 | 26 | anbi1i 676 |
. . . . . . . . . . . . . . . . 17
⊢ ((t ∈ ℘11c ∧ ⟪t,
⟪{m}, {n}⟫⟫ ∈ ( Ins2k ◡k(({{∅}} ×k {∅}) ∪ ( ∼ (( Ins2k Sk ⊕ Ins3k (( Ins3k ◡k Sk ∖ Ins2k (( Ins2k (( Nn ×k V) ∩ (( Ins2k SIk Sk ∩ Ins3k (( Ins3k SIk ((℘1c ×k
V) ∖ (( Ins3k Sk ⊕ Ins2k SIk Sk ) “k ℘1℘1℘11c)) ∩ Ins2k Sk ) “k ℘1℘11c))
“k ℘1℘1℘11c)) ⊕
Ins3k Ik )
“k ℘11c))
“k ℘11c))
“k ℘1℘11c) ∖ ({{∅}}
×k V))) ∩ Ins3k (( Ins2k ◡k(({{∅}} ×k {∅}) ∪ ( ∼ (( Ins2k Sk ⊕ Ins3k (( Ins3k ◡k Sk ∖ Ins2k (( Ins2k (( Nn ×k V) ∩ (( Ins2k SIk Sk ∩ Ins3k (( Ins3k SIk ((℘1c ×k
V) ∖ (( Ins3k Sk ⊕ Ins2k SIk Sk ) “k ℘1℘1℘11c)) ∩ Ins2k Sk ) “k ℘1℘11c))
“k ℘1℘1℘11c)) ⊕
Ins3k Ik )
“k ℘11c))
“k ℘11c))
“k ℘1℘11c) ∖ ({{∅}}
×k V))) ∩ Ins3k (( Nn ×k Nn ) ∩ (( Ins3k (( Ins3k SIk ((℘1c ×k
V) ∖ (( Ins3k Sk ⊕ Ins2k SIk Sk ) “k ℘1℘1℘11c)) ∩ Ins2k Sk ) “k ℘1℘11c) ∩ Ins2k (( Ins3k SIk ∼ (( Ins3k Sk ⊕ Ins2k SIk Sk ) “k ℘1℘11c) ∩ Ins2k Sk ) “k ℘1℘11c))
“k ℘1℘1℘11c)))
“k ℘11c))) ↔
(∃y
t = {{y}} ∧
⟪t, ⟪{m}, {n}⟫⟫ ∈ ( Ins2k ◡k(({{∅}} ×k {∅}) ∪ ( ∼ (( Ins2k Sk ⊕ Ins3k (( Ins3k ◡k Sk ∖ Ins2k (( Ins2k (( Nn ×k V) ∩ (( Ins2k SIk Sk ∩ Ins3k (( Ins3k SIk ((℘1c ×k
V) ∖ (( Ins3k Sk ⊕ Ins2k SIk Sk ) “k ℘1℘1℘11c)) ∩ Ins2k Sk ) “k ℘1℘11c))
“k ℘1℘1℘11c)) ⊕
Ins3k Ik )
“k ℘11c))
“k ℘11c))
“k ℘1℘11c) ∖ ({{∅}}
×k V))) ∩ Ins3k (( Ins2k ◡k(({{∅}} ×k {∅}) ∪ ( ∼ (( Ins2k Sk ⊕ Ins3k (( Ins3k ◡k Sk ∖ Ins2k (( Ins2k (( Nn ×k V) ∩ (( Ins2k SIk Sk ∩ Ins3k (( Ins3k SIk ((℘1c ×k
V) ∖ (( Ins3k Sk ⊕ Ins2k SIk Sk ) “k ℘1℘1℘11c)) ∩ Ins2k Sk ) “k ℘1℘11c))
“k ℘1℘1℘11c)) ⊕
Ins3k Ik )
“k ℘11c))
“k ℘11c))
“k ℘1℘11c) ∖ ({{∅}}
×k V))) ∩ Ins3k (( Nn ×k Nn ) ∩ (( Ins3k (( Ins3k SIk ((℘1c ×k
V) ∖ (( Ins3k Sk ⊕ Ins2k SIk Sk ) “k ℘1℘1℘11c)) ∩ Ins2k Sk ) “k ℘1℘11c) ∩ Ins2k (( Ins3k SIk ∼ (( Ins3k Sk ⊕ Ins2k SIk Sk ) “k ℘1℘11c) ∩ Ins2k Sk ) “k ℘1℘11c))
“k ℘1℘1℘11c)))
“k ℘11c)))) |
28 | | 19.41v 1901 |
. . . . . . . . . . . . . . . . 17
⊢ (∃y(t = {{y}} ∧ ⟪t,
⟪{m}, {n}⟫⟫ ∈ ( Ins2k ◡k(({{∅}} ×k {∅}) ∪ ( ∼ (( Ins2k Sk ⊕ Ins3k (( Ins3k ◡k Sk ∖ Ins2k (( Ins2k (( Nn ×k V) ∩ (( Ins2k SIk Sk ∩ Ins3k (( Ins3k SIk ((℘1c ×k
V) ∖ (( Ins3k Sk ⊕ Ins2k SIk Sk ) “k ℘1℘1℘11c)) ∩ Ins2k Sk ) “k ℘1℘11c))
“k ℘1℘1℘11c)) ⊕
Ins3k Ik )
“k ℘11c))
“k ℘11c))
“k ℘1℘11c) ∖ ({{∅}}
×k V))) ∩ Ins3k (( Ins2k ◡k(({{∅}} ×k {∅}) ∪ ( ∼ (( Ins2k Sk ⊕ Ins3k (( Ins3k ◡k Sk ∖ Ins2k (( Ins2k (( Nn ×k V) ∩ (( Ins2k SIk Sk ∩ Ins3k (( Ins3k SIk ((℘1c ×k
V) ∖ (( Ins3k Sk ⊕ Ins2k SIk Sk ) “k ℘1℘1℘11c)) ∩ Ins2k Sk ) “k ℘1℘11c))
“k ℘1℘1℘11c)) ⊕
Ins3k Ik )
“k ℘11c))
“k ℘11c))
“k ℘1℘11c) ∖ ({{∅}}
×k V))) ∩ Ins3k (( Nn ×k Nn ) ∩ (( Ins3k (( Ins3k SIk ((℘1c ×k
V) ∖ (( Ins3k Sk ⊕ Ins2k SIk Sk ) “k ℘1℘1℘11c)) ∩ Ins2k Sk ) “k ℘1℘11c) ∩ Ins2k (( Ins3k SIk ∼ (( Ins3k Sk ⊕ Ins2k SIk Sk ) “k ℘1℘11c) ∩ Ins2k Sk ) “k ℘1℘11c))
“k ℘1℘1℘11c)))
“k ℘11c))) ↔
(∃y
t = {{y}} ∧
⟪t, ⟪{m}, {n}⟫⟫ ∈ ( Ins2k ◡k(({{∅}} ×k {∅}) ∪ ( ∼ (( Ins2k Sk ⊕ Ins3k (( Ins3k ◡k Sk ∖ Ins2k (( Ins2k (( Nn ×k V) ∩ (( Ins2k SIk Sk ∩ Ins3k (( Ins3k SIk ((℘1c ×k
V) ∖ (( Ins3k Sk ⊕ Ins2k SIk Sk ) “k ℘1℘1℘11c)) ∩ Ins2k Sk ) “k ℘1℘11c))
“k ℘1℘1℘11c)) ⊕
Ins3k Ik )
“k ℘11c))
“k ℘11c))
“k ℘1℘11c) ∖ ({{∅}}
×k V))) ∩ Ins3k (( Ins2k ◡k(({{∅}} ×k {∅}) ∪ ( ∼ (( Ins2k Sk ⊕ Ins3k (( Ins3k ◡k Sk ∖ Ins2k (( Ins2k (( Nn ×k V) ∩ (( Ins2k SIk Sk ∩ Ins3k (( Ins3k SIk ((℘1c ×k
V) ∖ (( Ins3k Sk ⊕ Ins2k SIk Sk ) “k ℘1℘1℘11c)) ∩ Ins2k Sk ) “k ℘1℘11c))
“k ℘1℘1℘11c)) ⊕
Ins3k Ik )
“k ℘11c))
“k ℘11c))
“k ℘1℘11c) ∖ ({{∅}}
×k V))) ∩ Ins3k (( Nn ×k Nn ) ∩ (( Ins3k (( Ins3k SIk ((℘1c ×k
V) ∖ (( Ins3k Sk ⊕ Ins2k SIk Sk ) “k ℘1℘1℘11c)) ∩ Ins2k Sk ) “k ℘1℘11c) ∩ Ins2k (( Ins3k SIk ∼ (( Ins3k Sk ⊕ Ins2k SIk Sk ) “k ℘1℘11c) ∩ Ins2k Sk ) “k ℘1℘11c))
“k ℘1℘1℘11c)))
“k ℘11c)))) |
29 | 27, 28 | bitr4i 243 |
. . . . . . . . . . . . . . . 16
⊢ ((t ∈ ℘11c ∧ ⟪t,
⟪{m}, {n}⟫⟫ ∈ ( Ins2k ◡k(({{∅}} ×k {∅}) ∪ ( ∼ (( Ins2k Sk ⊕ Ins3k (( Ins3k ◡k Sk ∖ Ins2k (( Ins2k (( Nn ×k V) ∩ (( Ins2k SIk Sk ∩ Ins3k (( Ins3k SIk ((℘1c ×k
V) ∖ (( Ins3k Sk ⊕ Ins2k SIk Sk ) “k ℘1℘1℘11c)) ∩ Ins2k Sk ) “k ℘1℘11c))
“k ℘1℘1℘11c)) ⊕
Ins3k Ik )
“k ℘11c))
“k ℘11c))
“k ℘1℘11c) ∖ ({{∅}}
×k V))) ∩ Ins3k (( Ins2k ◡k(({{∅}} ×k {∅}) ∪ ( ∼ (( Ins2k Sk ⊕ Ins3k (( Ins3k ◡k Sk ∖ Ins2k (( Ins2k (( Nn ×k V) ∩ (( Ins2k SIk Sk ∩ Ins3k (( Ins3k SIk ((℘1c ×k
V) ∖ (( Ins3k Sk ⊕ Ins2k SIk Sk ) “k ℘1℘1℘11c)) ∩ Ins2k Sk ) “k ℘1℘11c))
“k ℘1℘1℘11c)) ⊕
Ins3k Ik )
“k ℘11c))
“k ℘11c))
“k ℘1℘11c) ∖ ({{∅}}
×k V))) ∩ Ins3k (( Nn ×k Nn ) ∩ (( Ins3k (( Ins3k SIk ((℘1c ×k
V) ∖ (( Ins3k Sk ⊕ Ins2k SIk Sk ) “k ℘1℘1℘11c)) ∩ Ins2k Sk ) “k ℘1℘11c) ∩ Ins2k (( Ins3k SIk ∼ (( Ins3k Sk ⊕ Ins2k SIk Sk ) “k ℘1℘11c) ∩ Ins2k Sk ) “k ℘1℘11c))
“k ℘1℘1℘11c)))
“k ℘11c))) ↔ ∃y(t = {{y}} ∧ ⟪t,
⟪{m}, {n}⟫⟫ ∈ ( Ins2k ◡k(({{∅}} ×k {∅}) ∪ ( ∼ (( Ins2k Sk ⊕ Ins3k (( Ins3k ◡k Sk ∖ Ins2k (( Ins2k (( Nn ×k V) ∩ (( Ins2k SIk Sk ∩ Ins3k (( Ins3k SIk ((℘1c ×k
V) ∖ (( Ins3k Sk ⊕ Ins2k SIk Sk ) “k ℘1℘1℘11c)) ∩ Ins2k Sk ) “k ℘1℘11c))
“k ℘1℘1℘11c)) ⊕
Ins3k Ik )
“k ℘11c))
“k ℘11c))
“k ℘1℘11c) ∖ ({{∅}}
×k V))) ∩ Ins3k (( Ins2k ◡k(({{∅}} ×k {∅}) ∪ ( ∼ (( Ins2k Sk ⊕ Ins3k (( Ins3k ◡k Sk ∖ Ins2k (( Ins2k (( Nn ×k V) ∩ (( Ins2k SIk Sk ∩ Ins3k (( Ins3k SIk ((℘1c ×k
V) ∖ (( Ins3k Sk ⊕ Ins2k SIk Sk ) “k ℘1℘1℘11c)) ∩ Ins2k Sk ) “k ℘1℘11c))
“k ℘1℘1℘11c)) ⊕
Ins3k Ik )
“k ℘11c))
“k ℘11c))
“k ℘1℘11c) ∖ ({{∅}}
×k V))) ∩ Ins3k (( Nn ×k Nn ) ∩ (( Ins3k (( Ins3k SIk ((℘1c ×k
V) ∖ (( Ins3k Sk ⊕ Ins2k SIk Sk ) “k ℘1℘1℘11c)) ∩ Ins2k Sk ) “k ℘1℘11c) ∩ Ins2k (( Ins3k SIk ∼ (( Ins3k Sk ⊕ Ins2k SIk Sk ) “k ℘1℘11c) ∩ Ins2k Sk ) “k ℘1℘11c))
“k ℘1℘1℘11c)))
“k ℘11c)))) |
30 | 29 | exbii 1582 |
. . . . . . . . . . . . . . 15
⊢ (∃t(t ∈ ℘11c ∧ ⟪t,
⟪{m}, {n}⟫⟫ ∈ ( Ins2k ◡k(({{∅}} ×k {∅}) ∪ ( ∼ (( Ins2k Sk ⊕ Ins3k (( Ins3k ◡k Sk ∖ Ins2k (( Ins2k (( Nn ×k V) ∩ (( Ins2k SIk Sk ∩ Ins3k (( Ins3k SIk ((℘1c ×k
V) ∖ (( Ins3k Sk ⊕ Ins2k SIk Sk ) “k ℘1℘1℘11c)) ∩ Ins2k Sk ) “k ℘1℘11c))
“k ℘1℘1℘11c)) ⊕
Ins3k Ik )
“k ℘11c))
“k ℘11c))
“k ℘1℘11c) ∖ ({{∅}}
×k V))) ∩ Ins3k (( Ins2k ◡k(({{∅}} ×k {∅}) ∪ ( ∼ (( Ins2k Sk ⊕ Ins3k (( Ins3k ◡k Sk ∖ Ins2k (( Ins2k (( Nn ×k V) ∩ (( Ins2k SIk Sk ∩ Ins3k (( Ins3k SIk ((℘1c ×k
V) ∖ (( Ins3k Sk ⊕ Ins2k SIk Sk ) “k ℘1℘1℘11c)) ∩ Ins2k Sk ) “k ℘1℘11c))
“k ℘1℘1℘11c)) ⊕
Ins3k Ik )
“k ℘11c))
“k ℘11c))
“k ℘1℘11c) ∖ ({{∅}}
×k V))) ∩ Ins3k (( Nn ×k Nn ) ∩ (( Ins3k (( Ins3k SIk ((℘1c ×k
V) ∖ (( Ins3k Sk ⊕ Ins2k SIk Sk ) “k ℘1℘1℘11c)) ∩ Ins2k Sk ) “k ℘1℘11c) ∩ Ins2k (( Ins3k SIk ∼ (( Ins3k Sk ⊕ Ins2k SIk Sk ) “k ℘1℘11c) ∩ Ins2k Sk ) “k ℘1℘11c))
“k ℘1℘1℘11c)))
“k ℘11c))) ↔ ∃t∃y(t = {{y}} ∧ ⟪t,
⟪{m}, {n}⟫⟫ ∈ ( Ins2k ◡k(({{∅}} ×k {∅}) ∪ ( ∼ (( Ins2k Sk ⊕ Ins3k (( Ins3k ◡k Sk ∖ Ins2k (( Ins2k (( Nn ×k V) ∩ (( Ins2k SIk Sk ∩ Ins3k (( Ins3k SIk ((℘1c ×k
V) ∖ (( Ins3k Sk ⊕ Ins2k SIk Sk ) “k ℘1℘1℘11c)) ∩ Ins2k Sk ) “k ℘1℘11c))
“k ℘1℘1℘11c)) ⊕
Ins3k Ik )
“k ℘11c))
“k ℘11c))
“k ℘1℘11c) ∖ ({{∅}}
×k V))) ∩ Ins3k (( Ins2k ◡k(({{∅}} ×k {∅}) ∪ ( ∼ (( Ins2k Sk ⊕ Ins3k (( Ins3k ◡k Sk ∖ Ins2k (( Ins2k (( Nn ×k V) ∩ (( Ins2k SIk Sk ∩ Ins3k (( Ins3k SIk ((℘1c ×k
V) ∖ (( Ins3k Sk ⊕ Ins2k SIk Sk ) “k ℘1℘1℘11c)) ∩ Ins2k Sk ) “k ℘1℘11c))
“k ℘1℘1℘11c)) ⊕
Ins3k Ik )
“k ℘11c))
“k ℘11c))
“k ℘1℘11c) ∖ ({{∅}}
×k V))) ∩ Ins3k (( Nn ×k Nn ) ∩ (( Ins3k (( Ins3k SIk ((℘1c ×k
V) ∖ (( Ins3k Sk ⊕ Ins2k SIk Sk ) “k ℘1℘1℘11c)) ∩ Ins2k Sk ) “k ℘1℘11c) ∩ Ins2k (( Ins3k SIk ∼ (( Ins3k Sk ⊕ Ins2k SIk Sk ) “k ℘1℘11c) ∩ Ins2k Sk ) “k ℘1℘11c))
“k ℘1℘1℘11c)))
“k ℘11c)))) |
31 | | excom 1741 |
. . . . . . . . . . . . . . 15
⊢ (∃y∃t(t = {{y}} ∧ ⟪t,
⟪{m}, {n}⟫⟫ ∈ ( Ins2k ◡k(({{∅}} ×k {∅}) ∪ ( ∼ (( Ins2k Sk ⊕ Ins3k (( Ins3k ◡k Sk ∖ Ins2k (( Ins2k (( Nn ×k V) ∩ (( Ins2k SIk Sk ∩ Ins3k (( Ins3k SIk ((℘1c ×k
V) ∖ (( Ins3k Sk ⊕ Ins2k SIk Sk ) “k ℘1℘1℘11c)) ∩ Ins2k Sk ) “k ℘1℘11c))
“k ℘1℘1℘11c)) ⊕
Ins3k Ik )
“k ℘11c))
“k ℘11c))
“k ℘1℘11c) ∖ ({{∅}}
×k V))) ∩ Ins3k (( Ins2k ◡k(({{∅}} ×k {∅}) ∪ ( ∼ (( Ins2k Sk ⊕ Ins3k (( Ins3k ◡k Sk ∖ Ins2k (( Ins2k (( Nn ×k V) ∩ (( Ins2k SIk Sk ∩ Ins3k (( Ins3k SIk ((℘1c ×k
V) ∖ (( Ins3k Sk ⊕ Ins2k SIk Sk ) “k ℘1℘1℘11c)) ∩ Ins2k Sk ) “k ℘1℘11c))
“k ℘1℘1℘11c)) ⊕
Ins3k Ik )
“k ℘11c))
“k ℘11c))
“k ℘1℘11c) ∖ ({{∅}}
×k V))) ∩ Ins3k (( Nn ×k Nn ) ∩ (( Ins3k (( Ins3k SIk ((℘1c ×k
V) ∖ (( Ins3k Sk ⊕ Ins2k SIk Sk ) “k ℘1℘1℘11c)) ∩ Ins2k Sk ) “k ℘1℘11c) ∩ Ins2k (( Ins3k SIk ∼ (( Ins3k Sk ⊕ Ins2k SIk Sk ) “k ℘1℘11c) ∩ Ins2k Sk ) “k ℘1℘11c))
“k ℘1℘1℘11c)))
“k ℘11c))) ↔ ∃t∃y(t = {{y}} ∧ ⟪t,
⟪{m}, {n}⟫⟫ ∈ ( Ins2k ◡k(({{∅}} ×k {∅}) ∪ ( ∼ (( Ins2k Sk ⊕ Ins3k (( Ins3k ◡k Sk ∖ Ins2k (( Ins2k (( Nn ×k V) ∩ (( Ins2k SIk Sk ∩ Ins3k (( Ins3k SIk ((℘1c ×k
V) ∖ (( Ins3k Sk ⊕ Ins2k SIk Sk ) “k ℘1℘1℘11c)) ∩ Ins2k Sk ) “k ℘1℘11c))
“k ℘1℘1℘11c)) ⊕
Ins3k Ik )
“k ℘11c))
“k ℘11c))
“k ℘1℘11c) ∖ ({{∅}}
×k V))) ∩ Ins3k (( Ins2k ◡k(({{∅}} ×k {∅}) ∪ ( ∼ (( Ins2k Sk ⊕ Ins3k (( Ins3k ◡k Sk ∖ Ins2k (( Ins2k (( Nn ×k V) ∩ (( Ins2k SIk Sk ∩ Ins3k (( Ins3k SIk ((℘1c ×k
V) ∖ (( Ins3k Sk ⊕ Ins2k SIk Sk ) “k ℘1℘1℘11c)) ∩ Ins2k Sk ) “k ℘1℘11c))
“k ℘1℘1℘11c)) ⊕
Ins3k Ik )
“k ℘11c))
“k ℘11c))
“k ℘1℘11c) ∖ ({{∅}}
×k V))) ∩ Ins3k (( Nn ×k Nn ) ∩ (( Ins3k (( Ins3k SIk ((℘1c ×k
V) ∖ (( Ins3k Sk ⊕ Ins2k SIk Sk ) “k ℘1℘1℘11c)) ∩ Ins2k Sk ) “k ℘1℘11c) ∩ Ins2k (( Ins3k SIk ∼ (( Ins3k Sk ⊕ Ins2k SIk Sk ) “k ℘1℘11c) ∩ Ins2k Sk ) “k ℘1℘11c))
“k ℘1℘1℘11c)))
“k ℘11c)))) |
32 | 30, 31 | bitr4i 243 |
. . . . . . . . . . . . . 14
⊢ (∃t(t ∈ ℘11c ∧ ⟪t,
⟪{m}, {n}⟫⟫ ∈ ( Ins2k ◡k(({{∅}} ×k {∅}) ∪ ( ∼ (( Ins2k Sk ⊕ Ins3k (( Ins3k ◡k Sk ∖ Ins2k (( Ins2k (( Nn ×k V) ∩ (( Ins2k SIk Sk ∩ Ins3k (( Ins3k SIk ((℘1c ×k
V) ∖ (( Ins3k Sk ⊕ Ins2k SIk Sk ) “k ℘1℘1℘11c)) ∩ Ins2k Sk ) “k ℘1℘11c))
“k ℘1℘1℘11c)) ⊕
Ins3k Ik )
“k ℘11c))
“k ℘11c))
“k ℘1℘11c) ∖ ({{∅}}
×k V))) ∩ Ins3k (( Ins2k ◡k(({{∅}} ×k {∅}) ∪ ( ∼ (( Ins2k Sk ⊕ Ins3k (( Ins3k ◡k Sk ∖ Ins2k (( Ins2k (( Nn ×k V) ∩ (( Ins2k SIk Sk ∩ Ins3k (( Ins3k SIk ((℘1c ×k
V) ∖ (( Ins3k Sk ⊕ Ins2k SIk Sk ) “k ℘1℘1℘11c)) ∩ Ins2k Sk ) “k ℘1℘11c))
“k ℘1℘1℘11c)) ⊕
Ins3k Ik )
“k ℘11c))
“k ℘11c))
“k ℘1℘11c) ∖ ({{∅}}
×k V))) ∩ Ins3k (( Nn ×k Nn ) ∩ (( Ins3k (( Ins3k SIk ((℘1c ×k
V) ∖ (( Ins3k Sk ⊕ Ins2k SIk Sk ) “k ℘1℘1℘11c)) ∩ Ins2k Sk ) “k ℘1℘11c) ∩ Ins2k (( Ins3k SIk ∼ (( Ins3k Sk ⊕ Ins2k SIk Sk ) “k ℘1℘11c) ∩ Ins2k Sk ) “k ℘1℘11c))
“k ℘1℘1℘11c)))
“k ℘11c))) ↔ ∃y∃t(t = {{y}} ∧ ⟪t,
⟪{m}, {n}⟫⟫ ∈ ( Ins2k ◡k(({{∅}} ×k {∅}) ∪ ( ∼ (( Ins2k Sk ⊕ Ins3k (( Ins3k ◡k Sk ∖ Ins2k (( Ins2k (( Nn ×k V) ∩ (( Ins2k SIk Sk ∩ Ins3k (( Ins3k SIk ((℘1c ×k
V) ∖ (( Ins3k Sk ⊕ Ins2k SIk Sk ) “k ℘1℘1℘11c)) ∩ Ins2k Sk ) “k ℘1℘11c))
“k ℘1℘1℘11c)) ⊕
Ins3k Ik )
“k ℘11c))
“k ℘11c))
“k ℘1℘11c) ∖ ({{∅}}
×k V))) ∩ Ins3k (( Ins2k ◡k(({{∅}} ×k {∅}) ∪ ( ∼ (( Ins2k Sk ⊕ Ins3k (( Ins3k ◡k Sk ∖ Ins2k (( Ins2k (( Nn ×k V) ∩ (( Ins2k SIk Sk ∩ Ins3k (( Ins3k SIk ((℘1c ×k
V) ∖ (( Ins3k Sk ⊕ Ins2k SIk Sk ) “k ℘1℘1℘11c)) ∩ Ins2k Sk ) “k ℘1℘11c))
“k ℘1℘1℘11c)) ⊕
Ins3k Ik )
“k ℘11c))
“k ℘11c))
“k ℘1℘11c) ∖ ({{∅}}
×k V))) ∩ Ins3k (( Nn ×k Nn ) ∩ (( Ins3k (( Ins3k SIk ((℘1c ×k
V) ∖ (( Ins3k Sk ⊕ Ins2k SIk Sk ) “k ℘1℘1℘11c)) ∩ Ins2k Sk ) “k ℘1℘11c) ∩ Ins2k (( Ins3k SIk ∼ (( Ins3k Sk ⊕ Ins2k SIk Sk ) “k ℘1℘11c) ∩ Ins2k Sk ) “k ℘1℘11c))
“k ℘1℘1℘11c)))
“k ℘11c)))) |
33 | 24, 25, 32 | 3bitri 262 |
. . . . . . . . . . . . 13
⊢ (⟪{m}, {n}⟫
∈ (( Ins2k ◡k(({{∅}} ×k {∅}) ∪ ( ∼ (( Ins2k Sk ⊕ Ins3k (( Ins3k ◡k Sk ∖ Ins2k (( Ins2k (( Nn ×k V) ∩ (( Ins2k SIk Sk ∩ Ins3k (( Ins3k SIk ((℘1c ×k
V) ∖ (( Ins3k Sk ⊕ Ins2k SIk Sk ) “k ℘1℘1℘11c)) ∩ Ins2k Sk ) “k ℘1℘11c))
“k ℘1℘1℘11c)) ⊕
Ins3k Ik )
“k ℘11c))
“k ℘11c))
“k ℘1℘11c) ∖ ({{∅}}
×k V))) ∩ Ins3k (( Ins2k ◡k(({{∅}} ×k {∅}) ∪ ( ∼ (( Ins2k Sk ⊕ Ins3k (( Ins3k ◡k Sk ∖ Ins2k (( Ins2k (( Nn ×k V) ∩ (( Ins2k SIk Sk ∩ Ins3k (( Ins3k SIk ((℘1c ×k
V) ∖ (( Ins3k Sk ⊕ Ins2k SIk Sk ) “k ℘1℘1℘11c)) ∩ Ins2k Sk ) “k ℘1℘11c))
“k ℘1℘1℘11c)) ⊕
Ins3k Ik )
“k ℘11c))
“k ℘11c))
“k ℘1℘11c) ∖ ({{∅}}
×k V))) ∩ Ins3k (( Nn ×k Nn ) ∩ (( Ins3k (( Ins3k SIk ((℘1c ×k
V) ∖ (( Ins3k Sk ⊕ Ins2k SIk Sk ) “k ℘1℘1℘11c)) ∩ Ins2k Sk ) “k ℘1℘11c) ∩ Ins2k (( Ins3k SIk ∼ (( Ins3k Sk ⊕ Ins2k SIk Sk ) “k ℘1℘11c) ∩ Ins2k Sk ) “k ℘1℘11c))
“k ℘1℘1℘11c)))
“k ℘11c))
“k ℘11c) ↔ ∃y∃t(t = {{y}} ∧ ⟪t,
⟪{m}, {n}⟫⟫ ∈ ( Ins2k ◡k(({{∅}} ×k {∅}) ∪ ( ∼ (( Ins2k Sk ⊕ Ins3k (( Ins3k ◡k Sk ∖ Ins2k (( Ins2k (( Nn ×k V) ∩ (( Ins2k SIk Sk ∩ Ins3k (( Ins3k SIk ((℘1c ×k
V) ∖ (( Ins3k Sk ⊕ Ins2k SIk Sk ) “k ℘1℘1℘11c)) ∩ Ins2k Sk ) “k ℘1℘11c))
“k ℘1℘1℘11c)) ⊕
Ins3k Ik )
“k ℘11c))
“k ℘11c))
“k ℘1℘11c) ∖ ({{∅}}
×k V))) ∩ Ins3k (( Ins2k ◡k(({{∅}} ×k {∅}) ∪ ( ∼ (( Ins2k Sk ⊕ Ins3k (( Ins3k ◡k Sk ∖ Ins2k (( Ins2k (( Nn ×k V) ∩ (( Ins2k SIk Sk ∩ Ins3k (( Ins3k SIk ((℘1c ×k
V) ∖ (( Ins3k Sk ⊕ Ins2k SIk Sk ) “k ℘1℘1℘11c)) ∩ Ins2k Sk ) “k ℘1℘11c))
“k ℘1℘1℘11c)) ⊕
Ins3k Ik )
“k ℘11c))
“k ℘11c))
“k ℘1℘11c) ∖ ({{∅}}
×k V))) ∩ Ins3k (( Nn ×k Nn ) ∩ (( Ins3k (( Ins3k SIk ((℘1c ×k
V) ∖ (( Ins3k Sk ⊕ Ins2k SIk Sk ) “k ℘1℘1℘11c)) ∩ Ins2k Sk ) “k ℘1℘11c) ∩ Ins2k (( Ins3k SIk ∼ (( Ins3k Sk ⊕ Ins2k SIk Sk ) “k ℘1℘11c) ∩ Ins2k Sk ) “k ℘1℘11c))
“k ℘1℘1℘11c)))
“k ℘11c)))) |
34 | | snex 4112 |
. . . . . . . . . . . . . . . 16
⊢ {{y}} ∈
V |
35 | | opkeq1 4060 |
. . . . . . . . . . . . . . . . 17
⊢ (t = {{y}} →
⟪t, ⟪{m}, {n}⟫⟫ = ⟪{{y}}, ⟪{m}, {n}⟫⟫) |
36 | 35 | eleq1d 2419 |
. . . . . . . . . . . . . . . 16
⊢ (t = {{y}} →
(⟪t, ⟪{m}, {n}⟫⟫ ∈ ( Ins2k ◡k(({{∅}} ×k {∅}) ∪ ( ∼ (( Ins2k Sk ⊕ Ins3k (( Ins3k ◡k Sk ∖ Ins2k (( Ins2k (( Nn ×k V) ∩ (( Ins2k SIk Sk ∩ Ins3k (( Ins3k SIk ((℘1c ×k
V) ∖ (( Ins3k Sk ⊕ Ins2k SIk Sk ) “k ℘1℘1℘11c)) ∩ Ins2k Sk ) “k ℘1℘11c))
“k ℘1℘1℘11c)) ⊕
Ins3k Ik )
“k ℘11c))
“k ℘11c))
“k ℘1℘11c) ∖ ({{∅}}
×k V))) ∩ Ins3k (( Ins2k ◡k(({{∅}} ×k {∅}) ∪ ( ∼ (( Ins2k Sk ⊕ Ins3k (( Ins3k ◡k Sk ∖ Ins2k (( Ins2k (( Nn ×k V) ∩ (( Ins2k SIk Sk ∩ Ins3k (( Ins3k SIk ((℘1c ×k
V) ∖ (( Ins3k Sk ⊕ Ins2k SIk Sk ) “k ℘1℘1℘11c)) ∩ Ins2k Sk ) “k ℘1℘11c))
“k ℘1℘1℘11c)) ⊕
Ins3k Ik )
“k ℘11c))
“k ℘11c))
“k ℘1℘11c) ∖ ({{∅}}
×k V))) ∩ Ins3k (( Nn ×k Nn ) ∩ (( Ins3k (( Ins3k SIk ((℘1c ×k
V) ∖ (( Ins3k Sk ⊕ Ins2k SIk Sk ) “k ℘1℘1℘11c)) ∩ Ins2k Sk ) “k ℘1℘11c) ∩ Ins2k (( Ins3k SIk ∼ (( Ins3k Sk ⊕ Ins2k SIk Sk ) “k ℘1℘11c) ∩ Ins2k Sk ) “k ℘1℘11c))
“k ℘1℘1℘11c)))
“k ℘11c)) ↔
⟪{{y}}, ⟪{m}, {n}⟫⟫ ∈ ( Ins2k ◡k(({{∅}} ×k {∅}) ∪ ( ∼ (( Ins2k Sk ⊕ Ins3k (( Ins3k ◡k Sk ∖ Ins2k (( Ins2k (( Nn ×k V) ∩ (( Ins2k SIk Sk ∩ Ins3k (( Ins3k SIk ((℘1c ×k
V) ∖ (( Ins3k Sk ⊕ Ins2k SIk Sk ) “k ℘1℘1℘11c)) ∩ Ins2k Sk ) “k ℘1℘11c))
“k ℘1℘1℘11c)) ⊕
Ins3k Ik )
“k ℘11c))
“k ℘11c))
“k ℘1℘11c) ∖ ({{∅}}
×k V))) ∩ Ins3k (( Ins2k ◡k(({{∅}} ×k {∅}) ∪ ( ∼ (( Ins2k Sk ⊕ Ins3k (( Ins3k ◡k Sk ∖ Ins2k (( Ins2k (( Nn ×k V) ∩ (( Ins2k SIk Sk ∩ Ins3k (( Ins3k SIk ((℘1c ×k
V) ∖ (( Ins3k Sk ⊕ Ins2k SIk Sk ) “k ℘1℘1℘11c)) ∩ Ins2k Sk ) “k ℘1℘11c))
“k ℘1℘1℘11c)) ⊕
Ins3k Ik )
“k ℘11c))
“k ℘11c))
“k ℘1℘11c) ∖ ({{∅}}
×k V))) ∩ Ins3k (( Nn ×k Nn ) ∩ (( Ins3k (( Ins3k SIk ((℘1c ×k
V) ∖ (( Ins3k Sk ⊕ Ins2k SIk Sk ) “k ℘1℘1℘11c)) ∩ Ins2k Sk ) “k ℘1℘11c) ∩ Ins2k (( Ins3k SIk ∼ (( Ins3k Sk ⊕ Ins2k SIk Sk ) “k ℘1℘11c) ∩ Ins2k Sk ) “k ℘1℘11c))
“k ℘1℘1℘11c)))
“k ℘11c)))) |
37 | 34, 36 | ceqsexv 2895 |
. . . . . . . . . . . . . . 15
⊢ (∃t(t = {{y}} ∧ ⟪t,
⟪{m}, {n}⟫⟫ ∈ ( Ins2k ◡k(({{∅}} ×k {∅}) ∪ ( ∼ (( Ins2k Sk ⊕ Ins3k (( Ins3k ◡k Sk ∖ Ins2k (( Ins2k (( Nn ×k V) ∩ (( Ins2k SIk Sk ∩ Ins3k (( Ins3k SIk ((℘1c ×k
V) ∖ (( Ins3k Sk ⊕ Ins2k SIk Sk ) “k ℘1℘1℘11c)) ∩ Ins2k Sk ) “k ℘1℘11c))
“k ℘1℘1℘11c)) ⊕
Ins3k Ik )
“k ℘11c))
“k ℘11c))
“k ℘1℘11c) ∖ ({{∅}}
×k V))) ∩ Ins3k (( Ins2k ◡k(({{∅}} ×k {∅}) ∪ ( ∼ (( Ins2k Sk ⊕ Ins3k (( Ins3k ◡k Sk ∖ Ins2k (( Ins2k (( Nn ×k V) ∩ (( Ins2k SIk Sk ∩ Ins3k (( Ins3k SIk ((℘1c ×k
V) ∖ (( Ins3k Sk ⊕ Ins2k SIk Sk ) “k ℘1℘1℘11c)) ∩ Ins2k Sk ) “k ℘1℘11c))
“k ℘1℘1℘11c)) ⊕
Ins3k Ik )
“k ℘11c))
“k ℘11c))
“k ℘1℘11c) ∖ ({{∅}}
×k V))) ∩ Ins3k (( Nn ×k Nn ) ∩ (( Ins3k (( Ins3k SIk ((℘1c ×k
V) ∖ (( Ins3k Sk ⊕ Ins2k SIk Sk ) “k ℘1℘1℘11c)) ∩ Ins2k Sk ) “k ℘1℘11c) ∩ Ins2k (( Ins3k SIk ∼ (( Ins3k Sk ⊕ Ins2k SIk Sk ) “k ℘1℘11c) ∩ Ins2k Sk ) “k ℘1℘11c))
“k ℘1℘1℘11c)))
“k ℘11c))) ↔
⟪{{y}}, ⟪{m}, {n}⟫⟫ ∈ ( Ins2k ◡k(({{∅}} ×k {∅}) ∪ ( ∼ (( Ins2k Sk ⊕ Ins3k (( Ins3k ◡k Sk ∖ Ins2k (( Ins2k (( Nn ×k V) ∩ (( Ins2k SIk Sk ∩ Ins3k (( Ins3k SIk ((℘1c ×k
V) ∖ (( Ins3k Sk ⊕ Ins2k SIk Sk ) “k ℘1℘1℘11c)) ∩ Ins2k Sk ) “k ℘1℘11c))
“k ℘1℘1℘11c)) ⊕
Ins3k Ik )
“k ℘11c))
“k ℘11c))
“k ℘1℘11c) ∖ ({{∅}}
×k V))) ∩ Ins3k (( Ins2k ◡k(({{∅}} ×k {∅}) ∪ ( ∼ (( Ins2k Sk ⊕ Ins3k (( Ins3k ◡k Sk ∖ Ins2k (( Ins2k (( Nn ×k V) ∩ (( Ins2k SIk Sk ∩ Ins3k (( Ins3k SIk ((℘1c ×k
V) ∖ (( Ins3k Sk ⊕ Ins2k SIk Sk ) “k ℘1℘1℘11c)) ∩ Ins2k Sk ) “k ℘1℘11c))
“k ℘1℘1℘11c)) ⊕
Ins3k Ik )
“k ℘11c))
“k ℘11c))
“k ℘1℘11c) ∖ ({{∅}}
×k V))) ∩ Ins3k (( Nn ×k Nn ) ∩ (( Ins3k (( Ins3k SIk ((℘1c ×k
V) ∖ (( Ins3k Sk ⊕ Ins2k SIk Sk ) “k ℘1℘1℘11c)) ∩ Ins2k Sk ) “k ℘1℘11c) ∩ Ins2k (( Ins3k SIk ∼ (( Ins3k Sk ⊕ Ins2k SIk Sk ) “k ℘1℘11c) ∩ Ins2k Sk ) “k ℘1℘11c))
“k ℘1℘1℘11c)))
“k ℘11c))) |
38 | | elin 3220 |
. . . . . . . . . . . . . . 15
⊢ (⟪{{y}}, ⟪{m}, {n}⟫⟫ ∈ ( Ins2k ◡k(({{∅}} ×k {∅}) ∪ ( ∼ (( Ins2k Sk ⊕ Ins3k (( Ins3k ◡k Sk ∖ Ins2k (( Ins2k (( Nn ×k V) ∩ (( Ins2k SIk Sk ∩ Ins3k (( Ins3k SIk ((℘1c ×k
V) ∖ (( Ins3k Sk ⊕ Ins2k SIk Sk ) “k ℘1℘1℘11c)) ∩ Ins2k Sk ) “k ℘1℘11c))
“k ℘1℘1℘11c)) ⊕
Ins3k Ik )
“k ℘11c))
“k ℘11c))
“k ℘1℘11c) ∖ ({{∅}}
×k V))) ∩ Ins3k (( Ins2k ◡k(({{∅}} ×k {∅}) ∪ ( ∼ (( Ins2k Sk ⊕ Ins3k (( Ins3k ◡k Sk ∖ Ins2k (( Ins2k (( Nn ×k V) ∩ (( Ins2k SIk Sk ∩ Ins3k (( Ins3k SIk ((℘1c ×k
V) ∖ (( Ins3k Sk ⊕ Ins2k SIk Sk ) “k ℘1℘1℘11c)) ∩ Ins2k Sk ) “k ℘1℘11c))
“k ℘1℘1℘11c)) ⊕
Ins3k Ik )
“k ℘11c))
“k ℘11c))
“k ℘1℘11c) ∖ ({{∅}}
×k V))) ∩ Ins3k (( Nn ×k Nn ) ∩ (( Ins3k (( Ins3k SIk ((℘1c ×k
V) ∖ (( Ins3k Sk ⊕ Ins2k SIk Sk ) “k ℘1℘1℘11c)) ∩ Ins2k Sk ) “k ℘1℘11c) ∩ Ins2k (( Ins3k SIk ∼ (( Ins3k Sk ⊕ Ins2k SIk Sk ) “k ℘1℘11c) ∩ Ins2k Sk ) “k ℘1℘11c))
“k ℘1℘1℘11c)))
“k ℘11c)) ↔
(⟪{{y}}, ⟪{m}, {n}⟫⟫ ∈ Ins2k ◡k(({{∅}} ×k {∅}) ∪ ( ∼ (( Ins2k Sk ⊕ Ins3k (( Ins3k ◡k Sk ∖ Ins2k (( Ins2k (( Nn ×k V) ∩ (( Ins2k SIk Sk ∩ Ins3k (( Ins3k SIk ((℘1c ×k
V) ∖ (( Ins3k Sk ⊕ Ins2k SIk Sk ) “k ℘1℘1℘11c)) ∩ Ins2k Sk ) “k ℘1℘11c))
“k ℘1℘1℘11c)) ⊕
Ins3k Ik )
“k ℘11c))
“k ℘11c))
“k ℘1℘11c) ∖ ({{∅}}
×k V))) ∧
⟪{{y}}, ⟪{m}, {n}⟫⟫ ∈ Ins3k (( Ins2k ◡k(({{∅}} ×k {∅}) ∪ ( ∼ (( Ins2k Sk ⊕ Ins3k (( Ins3k ◡k Sk ∖ Ins2k (( Ins2k (( Nn ×k V) ∩ (( Ins2k SIk Sk ∩ Ins3k (( Ins3k SIk ((℘1c ×k
V) ∖ (( Ins3k Sk ⊕ Ins2k SIk Sk ) “k ℘1℘1℘11c)) ∩ Ins2k Sk ) “k ℘1℘11c))
“k ℘1℘1℘11c)) ⊕
Ins3k Ik )
“k ℘11c))
“k ℘11c))
“k ℘1℘11c) ∖ ({{∅}}
×k V))) ∩ Ins3k (( Nn ×k Nn ) ∩ (( Ins3k (( Ins3k SIk ((℘1c ×k
V) ∖ (( Ins3k Sk ⊕ Ins2k SIk Sk ) “k ℘1℘1℘11c)) ∩ Ins2k Sk ) “k ℘1℘11c) ∩ Ins2k (( Ins3k SIk ∼ (( Ins3k Sk ⊕ Ins2k SIk Sk ) “k ℘1℘11c) ∩ Ins2k Sk ) “k ℘1℘11c))
“k ℘1℘1℘11c)))
“k ℘11c))) |
39 | | vex 2863 |
. . . . . . . . . . . . . . . . . 18
⊢ y ∈
V |
40 | 39, 3, 13 | otkelins2k 4256 |
. . . . . . . . . . . . . . . . 17
⊢ (⟪{{y}}, ⟪{m}, {n}⟫⟫ ∈ Ins2k ◡k(({{∅}} ×k {∅}) ∪ ( ∼ (( Ins2k Sk ⊕ Ins3k (( Ins3k ◡k Sk ∖ Ins2k (( Ins2k (( Nn ×k V) ∩ (( Ins2k SIk Sk ∩ Ins3k (( Ins3k SIk ((℘1c ×k
V) ∖ (( Ins3k Sk ⊕ Ins2k SIk Sk ) “k ℘1℘1℘11c)) ∩ Ins2k Sk ) “k ℘1℘11c))
“k ℘1℘1℘11c)) ⊕
Ins3k Ik )
“k ℘11c))
“k ℘11c))
“k ℘1℘11c) ∖ ({{∅}}
×k V))) ↔ ⟪y, {n}⟫
∈ ◡k(({{∅}} ×k {∅}) ∪ ( ∼ (( Ins2k Sk ⊕ Ins3k (( Ins3k ◡k Sk ∖ Ins2k (( Ins2k (( Nn ×k V) ∩ (( Ins2k SIk Sk ∩ Ins3k (( Ins3k SIk ((℘1c ×k
V) ∖ (( Ins3k Sk ⊕ Ins2k SIk Sk ) “k ℘1℘1℘11c)) ∩ Ins2k Sk ) “k ℘1℘11c))
“k ℘1℘1℘11c)) ⊕
Ins3k Ik )
“k ℘11c))
“k ℘11c))
“k ℘1℘11c) ∖ ({{∅}}
×k V)))) |
41 | 39, 13 | opkelcnvk 4251 |
. . . . . . . . . . . . . . . . 17
⊢ (⟪y, {n}⟫
∈ ◡k(({{∅}} ×k {∅}) ∪ ( ∼ (( Ins2k Sk ⊕ Ins3k (( Ins3k ◡k Sk ∖ Ins2k (( Ins2k (( Nn ×k V) ∩ (( Ins2k SIk Sk ∩ Ins3k (( Ins3k SIk ((℘1c ×k
V) ∖ (( Ins3k Sk ⊕ Ins2k SIk Sk ) “k ℘1℘1℘11c)) ∩ Ins2k Sk ) “k ℘1℘11c))
“k ℘1℘1℘11c)) ⊕
Ins3k Ik )
“k ℘11c))
“k ℘11c))
“k ℘1℘11c) ∖ ({{∅}}
×k V))) ↔ ⟪{n}, y⟫
∈ (({{∅}}
×k {∅}) ∪ (
∼ (( Ins2k Sk ⊕ Ins3k (( Ins3k ◡k Sk ∖ Ins2k (( Ins2k (( Nn ×k V) ∩ (( Ins2k SIk Sk ∩ Ins3k (( Ins3k SIk ((℘1c ×k
V) ∖ (( Ins3k Sk ⊕ Ins2k SIk Sk ) “k ℘1℘1℘11c)) ∩ Ins2k Sk ) “k ℘1℘11c))
“k ℘1℘1℘11c)) ⊕
Ins3k Ik )
“k ℘11c))
“k ℘11c))
“k ℘1℘11c) ∖ ({{∅}}
×k V)))) |
42 | 19, 39 | eqtfinrelk 4487 |
. . . . . . . . . . . . . . . . 17
⊢ (⟪{n}, y⟫
∈ (({{∅}}
×k {∅}) ∪ (
∼ (( Ins2k Sk ⊕ Ins3k (( Ins3k ◡k Sk ∖ Ins2k (( Ins2k (( Nn ×k V) ∩ (( Ins2k SIk Sk ∩ Ins3k (( Ins3k SIk ((℘1c ×k
V) ∖ (( Ins3k Sk ⊕ Ins2k SIk Sk ) “k ℘1℘1℘11c)) ∩ Ins2k Sk ) “k ℘1℘11c))
“k ℘1℘1℘11c)) ⊕
Ins3k Ik )
“k ℘11c))
“k ℘11c))
“k ℘1℘11c) ∖ ({{∅}}
×k V))) ↔ y =
Tfin n) |
43 | 40, 41, 42 | 3bitri 262 |
. . . . . . . . . . . . . . . 16
⊢ (⟪{{y}}, ⟪{m}, {n}⟫⟫ ∈ Ins2k ◡k(({{∅}} ×k {∅}) ∪ ( ∼ (( Ins2k Sk ⊕ Ins3k (( Ins3k ◡k Sk ∖ Ins2k (( Ins2k (( Nn ×k V) ∩ (( Ins2k SIk Sk ∩ Ins3k (( Ins3k SIk ((℘1c ×k
V) ∖ (( Ins3k Sk ⊕ Ins2k SIk Sk ) “k ℘1℘1℘11c)) ∩ Ins2k Sk ) “k ℘1℘11c))
“k ℘1℘1℘11c)) ⊕
Ins3k Ik )
“k ℘11c))
“k ℘11c))
“k ℘1℘11c) ∖ ({{∅}}
×k V))) ↔ y =
Tfin n) |
44 | 39, 3, 13 | otkelins3k 4257 |
. . . . . . . . . . . . . . . . 17
⊢ (⟪{{y}}, ⟪{m}, {n}⟫⟫ ∈ Ins3k (( Ins2k ◡k(({{∅}} ×k {∅}) ∪ ( ∼ (( Ins2k Sk ⊕ Ins3k (( Ins3k ◡k Sk ∖ Ins2k (( Ins2k (( Nn ×k V) ∩ (( Ins2k SIk Sk ∩ Ins3k (( Ins3k SIk ((℘1c ×k
V) ∖ (( Ins3k Sk ⊕ Ins2k SIk Sk ) “k ℘1℘1℘11c)) ∩ Ins2k Sk ) “k ℘1℘11c))
“k ℘1℘1℘11c)) ⊕
Ins3k Ik )
“k ℘11c))
“k ℘11c))
“k ℘1℘11c) ∖ ({{∅}}
×k V))) ∩ Ins3k (( Nn ×k Nn ) ∩ (( Ins3k (( Ins3k SIk ((℘1c ×k
V) ∖ (( Ins3k Sk ⊕ Ins2k SIk Sk ) “k ℘1℘1℘11c)) ∩ Ins2k Sk ) “k ℘1℘11c) ∩ Ins2k (( Ins3k SIk ∼ (( Ins3k Sk ⊕ Ins2k SIk Sk ) “k ℘1℘11c) ∩ Ins2k Sk ) “k ℘1℘11c))
“k ℘1℘1℘11c)))
“k ℘11c) ↔
⟪y, {m}⟫ ∈ ((
Ins2k ◡k(({{∅}} ×k {∅}) ∪ ( ∼ (( Ins2k Sk ⊕ Ins3k (( Ins3k ◡k Sk ∖ Ins2k (( Ins2k (( Nn ×k V) ∩ (( Ins2k SIk Sk ∩ Ins3k (( Ins3k SIk ((℘1c ×k
V) ∖ (( Ins3k Sk ⊕ Ins2k SIk Sk ) “k ℘1℘1℘11c)) ∩ Ins2k Sk ) “k ℘1℘11c))
“k ℘1℘1℘11c)) ⊕
Ins3k Ik )
“k ℘11c))
“k ℘11c))
“k ℘1℘11c) ∖ ({{∅}}
×k V))) ∩ Ins3k (( Nn ×k Nn ) ∩ (( Ins3k (( Ins3k SIk ((℘1c ×k
V) ∖ (( Ins3k Sk ⊕ Ins2k SIk Sk ) “k ℘1℘1℘11c)) ∩ Ins2k Sk ) “k ℘1℘11c) ∩ Ins2k (( Ins3k SIk ∼ (( Ins3k Sk ⊕ Ins2k SIk Sk ) “k ℘1℘11c) ∩ Ins2k Sk ) “k ℘1℘11c))
“k ℘1℘1℘11c)))
“k ℘11c)) |
45 | | opkex 4114 |
. . . . . . . . . . . . . . . . . . 19
⊢ ⟪y, {m}⟫
∈ V |
46 | 45 | elimak 4260 |
. . . . . . . . . . . . . . . . . 18
⊢ (⟪y, {m}⟫
∈ (( Ins2k ◡k(({{∅}} ×k {∅}) ∪ ( ∼ (( Ins2k Sk ⊕ Ins3k (( Ins3k ◡k Sk ∖ Ins2k (( Ins2k (( Nn ×k V) ∩ (( Ins2k SIk Sk ∩ Ins3k (( Ins3k SIk ((℘1c ×k
V) ∖ (( Ins3k Sk ⊕ Ins2k SIk Sk ) “k ℘1℘1℘11c)) ∩ Ins2k Sk ) “k ℘1℘11c))
“k ℘1℘1℘11c)) ⊕
Ins3k Ik )
“k ℘11c))
“k ℘11c))
“k ℘1℘11c) ∖ ({{∅}}
×k V))) ∩ Ins3k (( Nn ×k Nn ) ∩ (( Ins3k (( Ins3k SIk ((℘1c ×k
V) ∖ (( Ins3k Sk ⊕ Ins2k SIk Sk ) “k ℘1℘1℘11c)) ∩ Ins2k Sk ) “k ℘1℘11c) ∩ Ins2k (( Ins3k SIk ∼ (( Ins3k Sk ⊕ Ins2k SIk Sk ) “k ℘1℘11c) ∩ Ins2k Sk ) “k ℘1℘11c))
“k ℘1℘1℘11c)))
“k ℘11c) ↔ ∃t ∈ ℘1
1c⟪t,
⟪y, {m}⟫⟫ ∈ ( Ins2k ◡k(({{∅}} ×k {∅}) ∪ ( ∼ (( Ins2k Sk ⊕ Ins3k (( Ins3k ◡k Sk ∖ Ins2k (( Ins2k (( Nn ×k V) ∩ (( Ins2k SIk Sk ∩ Ins3k (( Ins3k SIk ((℘1c ×k
V) ∖ (( Ins3k Sk ⊕ Ins2k SIk Sk ) “k ℘1℘1℘11c)) ∩ Ins2k Sk ) “k ℘1℘11c))
“k ℘1℘1℘11c)) ⊕
Ins3k Ik )
“k ℘11c))
“k ℘11c))
“k ℘1℘11c) ∖ ({{∅}}
×k V))) ∩ Ins3k (( Nn ×k Nn ) ∩ (( Ins3k (( Ins3k SIk ((℘1c ×k
V) ∖ (( Ins3k Sk ⊕ Ins2k SIk Sk ) “k ℘1℘1℘11c)) ∩ Ins2k Sk ) “k ℘1℘11c) ∩ Ins2k (( Ins3k SIk ∼ (( Ins3k Sk ⊕ Ins2k SIk Sk ) “k ℘1℘11c) ∩ Ins2k Sk ) “k ℘1℘11c))
“k ℘1℘1℘11c)))) |
47 | | elpw11c 4148 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (t ∈ ℘11c ↔ ∃x t = {{x}}) |
48 | 47 | anbi1i 676 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((t ∈ ℘11c ∧ ⟪t,
⟪y, {m}⟫⟫ ∈ ( Ins2k ◡k(({{∅}} ×k {∅}) ∪ ( ∼ (( Ins2k Sk ⊕ Ins3k (( Ins3k ◡k Sk ∖ Ins2k (( Ins2k (( Nn ×k V) ∩ (( Ins2k SIk Sk ∩ Ins3k (( Ins3k SIk ((℘1c ×k
V) ∖ (( Ins3k Sk ⊕ Ins2k SIk Sk ) “k ℘1℘1℘11c)) ∩ Ins2k Sk ) “k ℘1℘11c))
“k ℘1℘1℘11c)) ⊕
Ins3k Ik )
“k ℘11c))
“k ℘11c))
“k ℘1℘11c) ∖ ({{∅}}
×k V))) ∩ Ins3k (( Nn ×k Nn ) ∩ (( Ins3k (( Ins3k SIk ((℘1c ×k
V) ∖ (( Ins3k Sk ⊕ Ins2k SIk Sk ) “k ℘1℘1℘11c)) ∩ Ins2k Sk ) “k ℘1℘11c) ∩ Ins2k (( Ins3k SIk ∼ (( Ins3k Sk ⊕ Ins2k SIk Sk ) “k ℘1℘11c) ∩ Ins2k Sk ) “k ℘1℘11c))
“k ℘1℘1℘11c)))) ↔
(∃x
t = {{x}} ∧
⟪t, ⟪y, {m}⟫⟫ ∈ ( Ins2k ◡k(({{∅}} ×k {∅}) ∪ ( ∼ (( Ins2k Sk ⊕ Ins3k (( Ins3k ◡k Sk ∖ Ins2k (( Ins2k (( Nn ×k V) ∩ (( Ins2k SIk Sk ∩ Ins3k (( Ins3k SIk ((℘1c ×k
V) ∖ (( Ins3k Sk ⊕ Ins2k SIk Sk ) “k ℘1℘1℘11c)) ∩ Ins2k Sk ) “k ℘1℘11c))
“k ℘1℘1℘11c)) ⊕
Ins3k Ik )
“k ℘11c))
“k ℘11c))
“k ℘1℘11c) ∖ ({{∅}}
×k V))) ∩ Ins3k (( Nn ×k Nn ) ∩ (( Ins3k (( Ins3k SIk ((℘1c ×k
V) ∖ (( Ins3k Sk ⊕ Ins2k SIk Sk ) “k ℘1℘1℘11c)) ∩ Ins2k Sk ) “k ℘1℘11c) ∩ Ins2k (( Ins3k SIk ∼ (( Ins3k Sk ⊕ Ins2k SIk Sk ) “k ℘1℘11c) ∩ Ins2k Sk ) “k ℘1℘11c))
“k ℘1℘1℘11c))))) |
49 | | 19.41v 1901 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (∃x(t = {{x}} ∧ ⟪t,
⟪y, {m}⟫⟫ ∈ ( Ins2k ◡k(({{∅}} ×k {∅}) ∪ ( ∼ (( Ins2k Sk ⊕ Ins3k (( Ins3k ◡k Sk ∖ Ins2k (( Ins2k (( Nn ×k V) ∩ (( Ins2k SIk Sk ∩ Ins3k (( Ins3k SIk ((℘1c ×k
V) ∖ (( Ins3k Sk ⊕ Ins2k SIk Sk ) “k ℘1℘1℘11c)) ∩ Ins2k Sk ) “k ℘1℘11c))
“k ℘1℘1℘11c)) ⊕
Ins3k Ik )
“k ℘11c))
“k ℘11c))
“k ℘1℘11c) ∖ ({{∅}}
×k V))) ∩ Ins3k (( Nn ×k Nn ) ∩ (( Ins3k (( Ins3k SIk ((℘1c ×k
V) ∖ (( Ins3k Sk ⊕ Ins2k SIk Sk ) “k ℘1℘1℘11c)) ∩ Ins2k Sk ) “k ℘1℘11c) ∩ Ins2k (( Ins3k SIk ∼ (( Ins3k Sk ⊕ Ins2k SIk Sk ) “k ℘1℘11c) ∩ Ins2k Sk ) “k ℘1℘11c))
“k ℘1℘1℘11c)))) ↔
(∃x
t = {{x}} ∧
⟪t, ⟪y, {m}⟫⟫ ∈ ( Ins2k ◡k(({{∅}} ×k {∅}) ∪ ( ∼ (( Ins2k Sk ⊕ Ins3k (( Ins3k ◡k Sk ∖ Ins2k (( Ins2k (( Nn ×k V) ∩ (( Ins2k SIk Sk ∩ Ins3k (( Ins3k SIk ((℘1c ×k
V) ∖ (( Ins3k Sk ⊕ Ins2k SIk Sk ) “k ℘1℘1℘11c)) ∩ Ins2k Sk ) “k ℘1℘11c))
“k ℘1℘1℘11c)) ⊕
Ins3k Ik )
“k ℘11c))
“k ℘11c))
“k ℘1℘11c) ∖ ({{∅}}
×k V))) ∩ Ins3k (( Nn ×k Nn ) ∩ (( Ins3k (( Ins3k SIk ((℘1c ×k
V) ∖ (( Ins3k Sk ⊕ Ins2k SIk Sk ) “k ℘1℘1℘11c)) ∩ Ins2k Sk ) “k ℘1℘11c) ∩ Ins2k (( Ins3k SIk ∼ (( Ins3k Sk ⊕ Ins2k SIk Sk ) “k ℘1℘11c) ∩ Ins2k Sk ) “k ℘1℘11c))
“k ℘1℘1℘11c))))) |
50 | 48, 49 | bitr4i 243 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((t ∈ ℘11c ∧ ⟪t,
⟪y, {m}⟫⟫ ∈ ( Ins2k ◡k(({{∅}} ×k {∅}) ∪ ( ∼ (( Ins2k Sk ⊕ Ins3k (( Ins3k ◡k Sk ∖ Ins2k (( Ins2k (( Nn ×k V) ∩ (( Ins2k SIk Sk ∩ Ins3k (( Ins3k SIk ((℘1c ×k
V) ∖ (( Ins3k Sk ⊕ Ins2k SIk Sk ) “k ℘1℘1℘11c)) ∩ Ins2k Sk ) “k ℘1℘11c))
“k ℘1℘1℘11c)) ⊕
Ins3k Ik )
“k ℘11c))
“k ℘11c))
“k ℘1℘11c) ∖ ({{∅}}
×k V))) ∩ Ins3k (( Nn ×k Nn ) ∩ (( Ins3k (( Ins3k SIk ((℘1c ×k
V) ∖ (( Ins3k Sk ⊕ Ins2k SIk Sk ) “k ℘1℘1℘11c)) ∩ Ins2k Sk ) “k ℘1℘11c) ∩ Ins2k (( Ins3k SIk ∼ (( Ins3k Sk ⊕ Ins2k SIk Sk ) “k ℘1℘11c) ∩ Ins2k Sk ) “k ℘1℘11c))
“k ℘1℘1℘11c)))) ↔
∃x(t = {{x}} ∧
⟪t, ⟪y, {m}⟫⟫ ∈ ( Ins2k ◡k(({{∅}} ×k {∅}) ∪ ( ∼ (( Ins2k Sk ⊕ Ins3k (( Ins3k ◡k Sk ∖ Ins2k (( Ins2k (( Nn ×k V) ∩ (( Ins2k SIk Sk ∩ Ins3k (( Ins3k SIk ((℘1c ×k
V) ∖ (( Ins3k Sk ⊕ Ins2k SIk Sk ) “k ℘1℘1℘11c)) ∩ Ins2k Sk ) “k ℘1℘11c))
“k ℘1℘1℘11c)) ⊕
Ins3k Ik )
“k ℘11c))
“k ℘11c))
“k ℘1℘11c) ∖ ({{∅}}
×k V))) ∩ Ins3k (( Nn ×k Nn ) ∩ (( Ins3k (( Ins3k SIk ((℘1c ×k
V) ∖ (( Ins3k Sk ⊕ Ins2k SIk Sk ) “k ℘1℘1℘11c)) ∩ Ins2k Sk ) “k ℘1℘11c) ∩ Ins2k (( Ins3k SIk ∼ (( Ins3k Sk ⊕ Ins2k SIk Sk ) “k ℘1℘11c) ∩ Ins2k Sk ) “k ℘1℘11c))
“k ℘1℘1℘11c))))) |
51 | 50 | exbii 1582 |
. . . . . . . . . . . . . . . . . . 19
⊢ (∃t(t ∈ ℘11c ∧ ⟪t,
⟪y, {m}⟫⟫ ∈ ( Ins2k ◡k(({{∅}} ×k {∅}) ∪ ( ∼ (( Ins2k Sk ⊕ Ins3k (( Ins3k ◡k Sk ∖ Ins2k (( Ins2k (( Nn ×k V) ∩ (( Ins2k SIk Sk ∩ Ins3k (( Ins3k SIk ((℘1c ×k
V) ∖ (( Ins3k Sk ⊕ Ins2k SIk Sk ) “k ℘1℘1℘11c)) ∩ Ins2k Sk ) “k ℘1℘11c))
“k ℘1℘1℘11c)) ⊕
Ins3k Ik )
“k ℘11c))
“k ℘11c))
“k ℘1℘11c) ∖ ({{∅}}
×k V))) ∩ Ins3k (( Nn ×k Nn ) ∩ (( Ins3k (( Ins3k SIk ((℘1c ×k
V) ∖ (( Ins3k Sk ⊕ Ins2k SIk Sk ) “k ℘1℘1℘11c)) ∩ Ins2k Sk ) “k ℘1℘11c) ∩ Ins2k (( Ins3k SIk ∼ (( Ins3k Sk ⊕ Ins2k SIk Sk ) “k ℘1℘11c) ∩ Ins2k Sk ) “k ℘1℘11c))
“k ℘1℘1℘11c)))) ↔
∃t∃x(t = {{x}} ∧ ⟪t,
⟪y, {m}⟫⟫ ∈ ( Ins2k ◡k(({{∅}} ×k {∅}) ∪ ( ∼ (( Ins2k Sk ⊕ Ins3k (( Ins3k ◡k Sk ∖ Ins2k (( Ins2k (( Nn ×k V) ∩ (( Ins2k SIk Sk ∩ Ins3k (( Ins3k SIk ((℘1c ×k
V) ∖ (( Ins3k Sk ⊕ Ins2k SIk Sk ) “k ℘1℘1℘11c)) ∩ Ins2k Sk ) “k ℘1℘11c))
“k ℘1℘1℘11c)) ⊕
Ins3k Ik )
“k ℘11c))
“k ℘11c))
“k ℘1℘11c) ∖ ({{∅}}
×k V))) ∩ Ins3k (( Nn ×k Nn ) ∩ (( Ins3k (( Ins3k SIk ((℘1c ×k
V) ∖ (( Ins3k Sk ⊕ Ins2k SIk Sk ) “k ℘1℘1℘11c)) ∩ Ins2k Sk ) “k ℘1℘11c) ∩ Ins2k (( Ins3k SIk ∼ (( Ins3k Sk ⊕ Ins2k SIk Sk ) “k ℘1℘11c) ∩ Ins2k Sk ) “k ℘1℘11c))
“k ℘1℘1℘11c))))) |
52 | | df-rex 2621 |
. . . . . . . . . . . . . . . . . . 19
⊢ (∃t ∈ ℘1
1c⟪t,
⟪y, {m}⟫⟫ ∈ ( Ins2k ◡k(({{∅}} ×k {∅}) ∪ ( ∼ (( Ins2k Sk ⊕ Ins3k (( Ins3k ◡k Sk ∖ Ins2k (( Ins2k (( Nn ×k V) ∩ (( Ins2k SIk Sk ∩ Ins3k (( Ins3k SIk ((℘1c ×k
V) ∖ (( Ins3k Sk ⊕ Ins2k SIk Sk ) “k ℘1℘1℘11c)) ∩ Ins2k Sk ) “k ℘1℘11c))
“k ℘1℘1℘11c)) ⊕
Ins3k Ik )
“k ℘11c))
“k ℘11c))
“k ℘1℘11c) ∖ ({{∅}}
×k V))) ∩ Ins3k (( Nn ×k Nn ) ∩ (( Ins3k (( Ins3k SIk ((℘1c ×k
V) ∖ (( Ins3k Sk ⊕ Ins2k SIk Sk ) “k ℘1℘1℘11c)) ∩ Ins2k Sk ) “k ℘1℘11c) ∩ Ins2k (( Ins3k SIk ∼ (( Ins3k Sk ⊕ Ins2k SIk Sk ) “k ℘1℘11c) ∩ Ins2k Sk ) “k ℘1℘11c))
“k ℘1℘1℘11c))) ↔ ∃t(t ∈ ℘11c ∧ ⟪t,
⟪y, {m}⟫⟫ ∈ ( Ins2k ◡k(({{∅}} ×k {∅}) ∪ ( ∼ (( Ins2k Sk ⊕ Ins3k (( Ins3k ◡k Sk ∖ Ins2k (( Ins2k (( Nn ×k V) ∩ (( Ins2k SIk Sk ∩ Ins3k (( Ins3k SIk ((℘1c ×k
V) ∖ (( Ins3k Sk ⊕ Ins2k SIk Sk ) “k ℘1℘1℘11c)) ∩ Ins2k Sk ) “k ℘1℘11c))
“k ℘1℘1℘11c)) ⊕
Ins3k Ik )
“k ℘11c))
“k ℘11c))
“k ℘1℘11c) ∖ ({{∅}}
×k V))) ∩ Ins3k (( Nn ×k Nn ) ∩ (( Ins3k (( Ins3k SIk ((℘1c ×k
V) ∖ (( Ins3k Sk ⊕ Ins2k SIk Sk ) “k ℘1℘1℘11c)) ∩ Ins2k Sk ) “k ℘1℘11c) ∩ Ins2k (( Ins3k SIk ∼ (( Ins3k Sk ⊕ Ins2k SIk Sk ) “k ℘1℘11c) ∩ Ins2k Sk ) “k ℘1℘11c))
“k ℘1℘1℘11c))))) |
53 | | excom 1741 |
. . . . . . . . . . . . . . . . . . 19
⊢ (∃x∃t(t = {{x}} ∧ ⟪t,
⟪y, {m}⟫⟫ ∈ ( Ins2k ◡k(({{∅}} ×k {∅}) ∪ ( ∼ (( Ins2k Sk ⊕ Ins3k (( Ins3k ◡k Sk ∖ Ins2k (( Ins2k (( Nn ×k V) ∩ (( Ins2k SIk Sk ∩ Ins3k (( Ins3k SIk ((℘1c ×k
V) ∖ (( Ins3k Sk ⊕ Ins2k SIk Sk ) “k ℘1℘1℘11c)) ∩ Ins2k Sk ) “k ℘1℘11c))
“k ℘1℘1℘11c)) ⊕
Ins3k Ik )
“k ℘11c))
“k ℘11c))
“k ℘1℘11c) ∖ ({{∅}}
×k V))) ∩ Ins3k (( Nn ×k Nn ) ∩ (( Ins3k (( Ins3k SIk ((℘1c ×k
V) ∖ (( Ins3k Sk ⊕ Ins2k SIk Sk ) “k ℘1℘1℘11c)) ∩ Ins2k Sk ) “k ℘1℘11c) ∩ Ins2k (( Ins3k SIk ∼ (( Ins3k Sk ⊕ Ins2k SIk Sk ) “k ℘1℘11c) ∩ Ins2k Sk ) “k ℘1℘11c))
“k ℘1℘1℘11c)))) ↔
∃t∃x(t = {{x}} ∧ ⟪t,
⟪y, {m}⟫⟫ ∈ ( Ins2k ◡k(({{∅}} ×k {∅}) ∪ ( ∼ (( Ins2k Sk ⊕ Ins3k (( Ins3k ◡k Sk ∖ Ins2k (( Ins2k (( Nn ×k V) ∩ (( Ins2k SIk Sk ∩ Ins3k (( Ins3k SIk ((℘1c ×k
V) ∖ (( Ins3k Sk ⊕ Ins2k SIk Sk ) “k ℘1℘1℘11c)) ∩ Ins2k Sk ) “k ℘1℘11c))
“k ℘1℘1℘11c)) ⊕
Ins3k Ik )
“k ℘11c))
“k ℘11c))
“k ℘1℘11c) ∖ ({{∅}}
×k V))) ∩ Ins3k (( Nn ×k Nn ) ∩ (( Ins3k (( Ins3k SIk ((℘1c ×k
V) ∖ (( Ins3k Sk ⊕ Ins2k SIk Sk ) “k ℘1℘1℘11c)) ∩ Ins2k Sk ) “k ℘1℘11c) ∩ Ins2k (( Ins3k SIk ∼ (( Ins3k Sk ⊕ Ins2k SIk Sk ) “k ℘1℘11c) ∩ Ins2k Sk ) “k ℘1℘11c))
“k ℘1℘1℘11c))))) |
54 | 51, 52, 53 | 3bitr4i 268 |
. . . . . . . . . . . . . . . . . 18
⊢ (∃t ∈ ℘1
1c⟪t,
⟪y, {m}⟫⟫ ∈ ( Ins2k ◡k(({{∅}} ×k {∅}) ∪ ( ∼ (( Ins2k Sk ⊕ Ins3k (( Ins3k ◡k Sk ∖ Ins2k (( Ins2k (( Nn ×k V) ∩ (( Ins2k SIk Sk ∩ Ins3k (( Ins3k SIk ((℘1c ×k
V) ∖ (( Ins3k Sk ⊕ Ins2k SIk Sk ) “k ℘1℘1℘11c)) ∩ Ins2k Sk ) “k ℘1℘11c))
“k ℘1℘1℘11c)) ⊕
Ins3k Ik )
“k ℘11c))
“k ℘11c))
“k ℘1℘11c) ∖ ({{∅}}
×k V))) ∩ Ins3k (( Nn ×k Nn ) ∩ (( Ins3k (( Ins3k SIk ((℘1c ×k
V) ∖ (( Ins3k Sk ⊕ Ins2k SIk Sk ) “k ℘1℘1℘11c)) ∩ Ins2k Sk ) “k ℘1℘11c) ∩ Ins2k (( Ins3k SIk ∼ (( Ins3k Sk ⊕ Ins2k SIk Sk ) “k ℘1℘11c) ∩ Ins2k Sk ) “k ℘1℘11c))
“k ℘1℘1℘11c))) ↔ ∃x∃t(t = {{x}} ∧ ⟪t,
⟪y, {m}⟫⟫ ∈ ( Ins2k ◡k(({{∅}} ×k {∅}) ∪ ( ∼ (( Ins2k Sk ⊕ Ins3k (( Ins3k ◡k Sk ∖ Ins2k (( Ins2k (( Nn ×k V) ∩ (( Ins2k SIk Sk ∩ Ins3k (( Ins3k SIk ((℘1c ×k
V) ∖ (( Ins3k Sk ⊕ Ins2k SIk Sk ) “k ℘1℘1℘11c)) ∩ Ins2k Sk ) “k ℘1℘11c))
“k ℘1℘1℘11c)) ⊕
Ins3k Ik )
“k ℘11c))
“k ℘11c))
“k ℘1℘11c) ∖ ({{∅}}
×k V))) ∩ Ins3k (( Nn ×k Nn ) ∩ (( Ins3k (( Ins3k SIk ((℘1c ×k
V) ∖ (( Ins3k Sk ⊕ Ins2k SIk Sk ) “k ℘1℘1℘11c)) ∩ Ins2k Sk ) “k ℘1℘11c) ∩ Ins2k (( Ins3k SIk ∼ (( Ins3k Sk ⊕ Ins2k SIk Sk ) “k ℘1℘11c) ∩ Ins2k Sk ) “k ℘1℘11c))
“k ℘1℘1℘11c))))) |
55 | | snex 4112 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ {{x}} ∈
V |
56 | | opkeq1 4060 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (t = {{x}} →
⟪t, ⟪y, {m}⟫⟫ = ⟪{{x}}, ⟪y,
{m}⟫⟫) |
57 | 56 | eleq1d 2419 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (t = {{x}} →
(⟪t, ⟪y, {m}⟫⟫ ∈ ( Ins2k ◡k(({{∅}} ×k {∅}) ∪ ( ∼ (( Ins2k Sk ⊕ Ins3k (( Ins3k ◡k Sk ∖ Ins2k (( Ins2k (( Nn ×k V) ∩ (( Ins2k SIk Sk ∩ Ins3k (( Ins3k SIk ((℘1c ×k
V) ∖ (( Ins3k Sk ⊕ Ins2k SIk Sk ) “k ℘1℘1℘11c)) ∩ Ins2k Sk ) “k ℘1℘11c))
“k ℘1℘1℘11c)) ⊕
Ins3k Ik )
“k ℘11c))
“k ℘11c))
“k ℘1℘11c) ∖ ({{∅}}
×k V))) ∩ Ins3k (( Nn ×k Nn ) ∩ (( Ins3k (( Ins3k SIk ((℘1c ×k
V) ∖ (( Ins3k Sk ⊕ Ins2k SIk Sk ) “k ℘1℘1℘11c)) ∩ Ins2k Sk ) “k ℘1℘11c) ∩ Ins2k (( Ins3k SIk ∼ (( Ins3k Sk ⊕ Ins2k SIk Sk ) “k ℘1℘11c) ∩ Ins2k Sk ) “k ℘1℘11c))
“k ℘1℘1℘11c))) ↔
⟪{{x}}, ⟪y, {m}⟫⟫ ∈ ( Ins2k ◡k(({{∅}} ×k {∅}) ∪ ( ∼ (( Ins2k Sk ⊕ Ins3k (( Ins3k ◡k Sk ∖ Ins2k (( Ins2k (( Nn ×k V) ∩ (( Ins2k SIk Sk ∩ Ins3k (( Ins3k SIk ((℘1c ×k
V) ∖ (( Ins3k Sk ⊕ Ins2k SIk Sk ) “k ℘1℘1℘11c)) ∩ Ins2k Sk ) “k ℘1℘11c))
“k ℘1℘1℘11c)) ⊕
Ins3k Ik )
“k ℘11c))
“k ℘11c))
“k ℘1℘11c) ∖ ({{∅}}
×k V))) ∩ Ins3k (( Nn ×k Nn ) ∩ (( Ins3k (( Ins3k SIk ((℘1c ×k
V) ∖ (( Ins3k Sk ⊕ Ins2k SIk Sk ) “k ℘1℘1℘11c)) ∩ Ins2k Sk ) “k ℘1℘11c) ∩ Ins2k (( Ins3k SIk ∼ (( Ins3k Sk ⊕ Ins2k SIk Sk ) “k ℘1℘11c) ∩ Ins2k Sk ) “k ℘1℘11c))
“k ℘1℘1℘11c))))) |
58 | 55, 57 | ceqsexv 2895 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (∃t(t = {{x}} ∧ ⟪t,
⟪y, {m}⟫⟫ ∈ ( Ins2k ◡k(({{∅}} ×k {∅}) ∪ ( ∼ (( Ins2k Sk ⊕ Ins3k (( Ins3k ◡k Sk ∖ Ins2k (( Ins2k (( Nn ×k V) ∩ (( Ins2k SIk Sk ∩ Ins3k (( Ins3k SIk ((℘1c ×k
V) ∖ (( Ins3k Sk ⊕ Ins2k SIk Sk ) “k ℘1℘1℘11c)) ∩ Ins2k Sk ) “k ℘1℘11c))
“k ℘1℘1℘11c)) ⊕
Ins3k Ik )
“k ℘11c))
“k ℘11c))
“k ℘1℘11c) ∖ ({{∅}}
×k V))) ∩ Ins3k (( Nn ×k Nn ) ∩ (( Ins3k (( Ins3k SIk ((℘1c ×k
V) ∖ (( Ins3k Sk ⊕ Ins2k SIk Sk ) “k ℘1℘1℘11c)) ∩ Ins2k Sk ) “k ℘1℘11c) ∩ Ins2k (( Ins3k SIk ∼ (( Ins3k Sk ⊕ Ins2k SIk Sk ) “k ℘1℘11c) ∩ Ins2k Sk ) “k ℘1℘11c))
“k ℘1℘1℘11c)))) ↔
⟪{{x}}, ⟪y, {m}⟫⟫ ∈ ( Ins2k ◡k(({{∅}} ×k {∅}) ∪ ( ∼ (( Ins2k Sk ⊕ Ins3k (( Ins3k ◡k Sk ∖ Ins2k (( Ins2k (( Nn ×k V) ∩ (( Ins2k SIk Sk ∩ Ins3k (( Ins3k SIk ((℘1c ×k
V) ∖ (( Ins3k Sk ⊕ Ins2k SIk Sk ) “k ℘1℘1℘11c)) ∩ Ins2k Sk ) “k ℘1℘11c))
“k ℘1℘1℘11c)) ⊕
Ins3k Ik )
“k ℘11c))
“k ℘11c))
“k ℘1℘11c) ∖ ({{∅}}
×k V))) ∩ Ins3k (( Nn ×k Nn ) ∩ (( Ins3k (( Ins3k SIk ((℘1c ×k
V) ∖ (( Ins3k Sk ⊕ Ins2k SIk Sk ) “k ℘1℘1℘11c)) ∩ Ins2k Sk ) “k ℘1℘11c) ∩ Ins2k (( Ins3k SIk ∼ (( Ins3k Sk ⊕ Ins2k SIk Sk ) “k ℘1℘11c) ∩ Ins2k Sk ) “k ℘1℘11c))
“k ℘1℘1℘11c)))) |
59 | | elin 3220 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (⟪{{x}}, ⟪y,
{m}⟫⟫ ∈ ( Ins2k ◡k(({{∅}} ×k {∅}) ∪ ( ∼ (( Ins2k Sk ⊕ Ins3k (( Ins3k ◡k Sk ∖ Ins2k (( Ins2k (( Nn ×k V) ∩ (( Ins2k SIk Sk ∩ Ins3k (( Ins3k SIk ((℘1c ×k
V) ∖ (( Ins3k Sk ⊕ Ins2k SIk Sk ) “k ℘1℘1℘11c)) ∩ Ins2k Sk ) “k ℘1℘11c))
“k ℘1℘1℘11c)) ⊕
Ins3k Ik )
“k ℘11c))
“k ℘11c))
“k ℘1℘11c) ∖ ({{∅}}
×k V))) ∩ Ins3k (( Nn ×k Nn ) ∩ (( Ins3k (( Ins3k SIk ((℘1c ×k
V) ∖ (( Ins3k Sk ⊕ Ins2k SIk Sk ) “k ℘1℘1℘11c)) ∩ Ins2k Sk ) “k ℘1℘11c) ∩ Ins2k (( Ins3k SIk ∼ (( Ins3k Sk ⊕ Ins2k SIk Sk ) “k ℘1℘11c) ∩ Ins2k Sk ) “k ℘1℘11c))
“k ℘1℘1℘11c))) ↔
(⟪{{x}}, ⟪y, {m}⟫⟫ ∈ Ins2k ◡k(({{∅}} ×k {∅}) ∪ ( ∼ (( Ins2k Sk ⊕ Ins3k (( Ins3k ◡k Sk ∖ Ins2k (( Ins2k (( Nn ×k V) ∩ (( Ins2k SIk Sk ∩ Ins3k (( Ins3k SIk ((℘1c ×k
V) ∖ (( Ins3k Sk ⊕ Ins2k SIk Sk ) “k ℘1℘1℘11c)) ∩ Ins2k Sk ) “k ℘1℘11c))
“k ℘1℘1℘11c)) ⊕
Ins3k Ik )
“k ℘11c))
“k ℘11c))
“k ℘1℘11c) ∖ ({{∅}}
×k V))) ∧
⟪{{x}}, ⟪y, {m}⟫⟫ ∈ Ins3k (( Nn ×k Nn ) ∩ (( Ins3k (( Ins3k SIk ((℘1c ×k
V) ∖ (( Ins3k Sk ⊕ Ins2k SIk Sk ) “k ℘1℘1℘11c)) ∩ Ins2k Sk ) “k ℘1℘11c) ∩ Ins2k (( Ins3k SIk ∼ (( Ins3k Sk ⊕ Ins2k SIk Sk ) “k ℘1℘11c) ∩ Ins2k Sk ) “k ℘1℘11c))
“k ℘1℘1℘11c)))) |
60 | | vex 2863 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ x ∈
V |
61 | 60, 39, 3 | otkelins2k 4256 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (⟪{{x}}, ⟪y,
{m}⟫⟫ ∈ Ins2k ◡k(({{∅}} ×k {∅}) ∪ ( ∼ (( Ins2k Sk ⊕ Ins3k (( Ins3k ◡k Sk ∖ Ins2k (( Ins2k (( Nn ×k V) ∩ (( Ins2k SIk Sk ∩ Ins3k (( Ins3k SIk ((℘1c ×k
V) ∖ (( Ins3k Sk ⊕ Ins2k SIk Sk ) “k ℘1℘1℘11c)) ∩ Ins2k Sk ) “k ℘1℘11c))
“k ℘1℘1℘11c)) ⊕
Ins3k Ik )
“k ℘11c))
“k ℘11c))
“k ℘1℘11c) ∖ ({{∅}}
×k V))) ↔ ⟪x, {m}⟫
∈ ◡k(({{∅}} ×k {∅}) ∪ ( ∼ (( Ins2k Sk ⊕ Ins3k (( Ins3k ◡k Sk ∖ Ins2k (( Ins2k (( Nn ×k V) ∩ (( Ins2k SIk Sk ∩ Ins3k (( Ins3k SIk ((℘1c ×k
V) ∖ (( Ins3k Sk ⊕ Ins2k SIk Sk ) “k ℘1℘1℘11c)) ∩ Ins2k Sk ) “k ℘1℘11c))
“k ℘1℘1℘11c)) ⊕
Ins3k Ik )
“k ℘11c))
“k ℘11c))
“k ℘1℘11c) ∖ ({{∅}}
×k V)))) |
62 | 60, 3 | opkelcnvk 4251 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (⟪x, {m}⟫
∈ ◡k(({{∅}} ×k {∅}) ∪ ( ∼ (( Ins2k Sk ⊕ Ins3k (( Ins3k ◡k Sk ∖ Ins2k (( Ins2k (( Nn ×k V) ∩ (( Ins2k SIk Sk ∩ Ins3k (( Ins3k SIk ((℘1c ×k
V) ∖ (( Ins3k Sk ⊕ Ins2k SIk Sk ) “k ℘1℘1℘11c)) ∩ Ins2k Sk ) “k ℘1℘11c))
“k ℘1℘1℘11c)) ⊕
Ins3k Ik )
“k ℘11c))
“k ℘11c))
“k ℘1℘11c) ∖ ({{∅}}
×k V))) ↔ ⟪{m}, x⟫
∈ (({{∅}}
×k {∅}) ∪ (
∼ (( Ins2k Sk ⊕ Ins3k (( Ins3k ◡k Sk ∖ Ins2k (( Ins2k (( Nn ×k V) ∩ (( Ins2k SIk Sk ∩ Ins3k (( Ins3k SIk ((℘1c ×k
V) ∖ (( Ins3k Sk ⊕ Ins2k SIk Sk ) “k ℘1℘1℘11c)) ∩ Ins2k Sk ) “k ℘1℘11c))
“k ℘1℘1℘11c)) ⊕
Ins3k Ik )
“k ℘11c))
“k ℘11c))
“k ℘1℘11c) ∖ ({{∅}}
×k V)))) |
63 | 1, 60 | eqtfinrelk 4487 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (⟪{m}, x⟫
∈ (({{∅}}
×k {∅}) ∪ (
∼ (( Ins2k Sk ⊕ Ins3k (( Ins3k ◡k Sk ∖ Ins2k (( Ins2k (( Nn ×k V) ∩ (( Ins2k SIk Sk ∩ Ins3k (( Ins3k SIk ((℘1c ×k
V) ∖ (( Ins3k Sk ⊕ Ins2k SIk Sk ) “k ℘1℘1℘11c)) ∩ Ins2k Sk ) “k ℘1℘11c))
“k ℘1℘1℘11c)) ⊕
Ins3k Ik )
“k ℘11c))
“k ℘11c))
“k ℘1℘11c) ∖ ({{∅}}
×k V))) ↔ x =
Tfin m) |
64 | 61, 62, 63 | 3bitri 262 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (⟪{{x}}, ⟪y,
{m}⟫⟫ ∈ Ins2k ◡k(({{∅}} ×k {∅}) ∪ ( ∼ (( Ins2k Sk ⊕ Ins3k (( Ins3k ◡k Sk ∖ Ins2k (( Ins2k (( Nn ×k V) ∩ (( Ins2k SIk Sk ∩ Ins3k (( Ins3k SIk ((℘1c ×k
V) ∖ (( Ins3k Sk ⊕ Ins2k SIk Sk ) “k ℘1℘1℘11c)) ∩ Ins2k Sk ) “k ℘1℘11c))
“k ℘1℘1℘11c)) ⊕
Ins3k Ik )
“k ℘11c))
“k ℘11c))
“k ℘1℘11c) ∖ ({{∅}}
×k V))) ↔ x =
Tfin m) |
65 | 60, 39, 3 | otkelins3k 4257 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (⟪{{x}}, ⟪y,
{m}⟫⟫ ∈ Ins3k (( Nn ×k Nn ) ∩ (( Ins3k (( Ins3k SIk ((℘1c ×k
V) ∖ (( Ins3k Sk ⊕ Ins2k SIk Sk ) “k ℘1℘1℘11c)) ∩ Ins2k Sk ) “k ℘1℘11c) ∩ Ins2k (( Ins3k SIk ∼ (( Ins3k Sk ⊕ Ins2k SIk Sk ) “k ℘1℘11c) ∩ Ins2k Sk ) “k ℘1℘11c))
“k ℘1℘1℘11c)) ↔
⟪x, y⟫ ∈ ((
Nn ×k Nn ) ∩ (( Ins3k (( Ins3k SIk ((℘1c ×k
V) ∖ (( Ins3k Sk ⊕ Ins2k SIk Sk ) “k ℘1℘1℘11c)) ∩ Ins2k Sk ) “k ℘1℘11c) ∩ Ins2k (( Ins3k SIk ∼ (( Ins3k Sk ⊕ Ins2k SIk Sk ) “k ℘1℘11c) ∩ Ins2k Sk ) “k ℘1℘11c))
“k ℘1℘1℘11c))) |
66 | 60, 39 | srelk 4525 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (⟪x, y⟫
∈ (( Nn
×k Nn ) ∩ (( Ins3k (( Ins3k SIk ((℘1c ×k
V) ∖ (( Ins3k Sk ⊕ Ins2k SIk Sk ) “k ℘1℘1℘11c)) ∩ Ins2k Sk ) “k ℘1℘11c) ∩ Ins2k (( Ins3k SIk ∼ (( Ins3k Sk ⊕ Ins2k SIk Sk ) “k ℘1℘11c) ∩ Ins2k Sk ) “k ℘1℘11c))
“k ℘1℘1℘11c)) ↔ Sfin (x,
y)) |
67 | 65, 66 | bitri 240 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (⟪{{x}}, ⟪y,
{m}⟫⟫ ∈ Ins3k (( Nn ×k Nn ) ∩ (( Ins3k (( Ins3k SIk ((℘1c ×k
V) ∖ (( Ins3k Sk ⊕ Ins2k SIk Sk ) “k ℘1℘1℘11c)) ∩ Ins2k Sk ) “k ℘1℘11c) ∩ Ins2k (( Ins3k SIk ∼ (( Ins3k Sk ⊕ Ins2k SIk Sk ) “k ℘1℘11c) ∩ Ins2k Sk ) “k ℘1℘11c))
“k ℘1℘1℘11c)) ↔ Sfin (x,
y)) |
68 | 64, 67 | anbi12i 678 |
. . . . . . . . . . . . . . . . . . . 20
⊢
((⟪{{x}}, ⟪y, {m}⟫⟫ ∈ Ins2k ◡k(({{∅}} ×k {∅}) ∪ ( ∼ (( Ins2k Sk ⊕ Ins3k (( Ins3k ◡k Sk ∖ Ins2k (( Ins2k (( Nn ×k V) ∩ (( Ins2k SIk Sk ∩ Ins3k (( Ins3k SIk ((℘1c ×k
V) ∖ (( Ins3k Sk ⊕ Ins2k SIk Sk ) “k ℘1℘1℘11c)) ∩ Ins2k Sk ) “k ℘1℘11c))
“k ℘1℘1℘11c)) ⊕
Ins3k Ik )
“k ℘11c))
“k ℘11c))
“k ℘1℘11c) ∖ ({{∅}}
×k V))) ∧
⟪{{x}}, ⟪y, {m}⟫⟫ ∈ Ins3k (( Nn ×k Nn ) ∩ (( Ins3k (( Ins3k SIk ((℘1c ×k
V) ∖ (( Ins3k Sk ⊕ Ins2k SIk Sk ) “k ℘1℘1℘11c)) ∩ Ins2k Sk ) “k ℘1℘11c) ∩ Ins2k (( Ins3k SIk ∼ (( Ins3k Sk ⊕ Ins2k SIk Sk ) “k ℘1℘11c) ∩ Ins2k Sk ) “k ℘1℘11c))
“k ℘1℘1℘11c))) ↔
(x = Tfin m
∧ Sfin
(x, y))) |
69 | 58, 59, 68 | 3bitri 262 |
. . . . . . . . . . . . . . . . . . 19
⊢ (∃t(t = {{x}} ∧ ⟪t,
⟪y, {m}⟫⟫ ∈ ( Ins2k ◡k(({{∅}} ×k {∅}) ∪ ( ∼ (( Ins2k Sk ⊕ Ins3k (( Ins3k ◡k Sk ∖ Ins2k (( Ins2k (( Nn ×k V) ∩ (( Ins2k SIk Sk ∩ Ins3k (( Ins3k SIk ((℘1c ×k
V) ∖ (( Ins3k Sk ⊕ Ins2k SIk Sk ) “k ℘1℘1℘11c)) ∩ Ins2k Sk ) “k ℘1℘11c))
“k ℘1℘1℘11c)) ⊕
Ins3k Ik )
“k ℘11c))
“k ℘11c))
“k ℘1℘11c) ∖ ({{∅}}
×k V))) ∩ Ins3k (( Nn ×k Nn ) ∩ (( Ins3k (( Ins3k SIk ((℘1c ×k
V) ∖ (( Ins3k Sk ⊕ Ins2k SIk Sk ) “k ℘1℘1℘11c)) ∩ Ins2k Sk ) “k ℘1℘11c) ∩ Ins2k (( Ins3k SIk ∼ (( Ins3k Sk ⊕ Ins2k SIk Sk ) “k ℘1℘11c) ∩ Ins2k Sk ) “k ℘1℘11c))
“k ℘1℘1℘11c)))) ↔
(x = Tfin m
∧ Sfin
(x, y))) |
70 | 69 | exbii 1582 |
. . . . . . . . . . . . . . . . . 18
⊢ (∃x∃t(t = {{x}} ∧ ⟪t,
⟪y, {m}⟫⟫ ∈ ( Ins2k ◡k(({{∅}} ×k {∅}) ∪ ( ∼ (( Ins2k Sk ⊕ Ins3k (( Ins3k ◡k Sk ∖ Ins2k (( Ins2k (( Nn ×k V) ∩ (( Ins2k SIk Sk ∩ Ins3k (( Ins3k SIk ((℘1c ×k
V) ∖ (( Ins3k Sk ⊕ Ins2k SIk Sk ) “k ℘1℘1℘11c)) ∩ Ins2k Sk ) “k ℘1℘11c))
“k ℘1℘1℘11c)) ⊕
Ins3k Ik )
“k ℘11c))
“k ℘11c))
“k ℘1℘11c) ∖ ({{∅}}
×k V))) ∩ Ins3k (( Nn ×k Nn ) ∩ (( Ins3k (( Ins3k SIk ((℘1c ×k
V) ∖ (( Ins3k Sk ⊕ Ins2k SIk Sk ) “k ℘1℘1℘11c)) ∩ Ins2k Sk ) “k ℘1℘11c) ∩ Ins2k (( Ins3k SIk ∼ (( Ins3k Sk ⊕ Ins2k SIk Sk ) “k ℘1℘11c) ∩ Ins2k Sk ) “k ℘1℘11c))
“k ℘1℘1℘11c)))) ↔
∃x(x = Tfin m
∧ Sfin
(x, y))) |
71 | 46, 54, 70 | 3bitri 262 |
. . . . . . . . . . . . . . . . 17
⊢ (⟪y, {m}⟫
∈ (( Ins2k ◡k(({{∅}} ×k {∅}) ∪ ( ∼ (( Ins2k Sk ⊕ Ins3k (( Ins3k ◡k Sk ∖ Ins2k (( Ins2k (( Nn ×k V) ∩ (( Ins2k SIk Sk ∩ Ins3k (( Ins3k SIk ((℘1c ×k
V) ∖ (( Ins3k Sk ⊕ Ins2k SIk Sk ) “k ℘1℘1℘11c)) ∩ Ins2k Sk ) “k ℘1℘11c))
“k ℘1℘1℘11c)) ⊕
Ins3k Ik )
“k ℘11c))
“k ℘11c))
“k ℘1℘11c) ∖ ({{∅}}
×k V))) ∩ Ins3k (( Nn ×k Nn ) ∩ (( Ins3k (( Ins3k SIk ((℘1c ×k
V) ∖ (( Ins3k Sk ⊕ Ins2k SIk Sk ) “k ℘1℘1℘11c)) ∩ Ins2k Sk ) “k ℘1℘11c) ∩ Ins2k (( Ins3k SIk ∼ (( Ins3k Sk ⊕ Ins2k SIk Sk ) “k ℘1℘11c) ∩ Ins2k Sk ) “k ℘1℘11c))
“k ℘1℘1℘11c)))
“k ℘11c) ↔ ∃x(x = Tfin
m ∧ Sfin (x,
y))) |
72 | | tfinex 4486 |
. . . . . . . . . . . . . . . . . 18
⊢ Tfin m
∈ V |
73 | | sfineq1 4527 |
. . . . . . . . . . . . . . . . . 18
⊢ (x = Tfin
m → ( Sfin (x,
y) ↔ Sfin ( Tfin m,
y))) |
74 | 72, 73 | ceqsexv 2895 |
. . . . . . . . . . . . . . . . 17
⊢ (∃x(x = Tfin
m ∧ Sfin (x,
y)) ↔ Sfin ( Tfin m,
y)) |
75 | 44, 71, 74 | 3bitri 262 |
. . . . . . . . . . . . . . . 16
⊢ (⟪{{y}}, ⟪{m}, {n}⟫⟫ ∈ Ins3k (( Ins2k ◡k(({{∅}} ×k {∅}) ∪ ( ∼ (( Ins2k Sk ⊕ Ins3k (( Ins3k ◡k Sk ∖ Ins2k (( Ins2k (( Nn ×k V) ∩ (( Ins2k SIk Sk ∩ Ins3k (( Ins3k SIk ((℘1c ×k
V) ∖ (( Ins3k Sk ⊕ Ins2k SIk Sk ) “k ℘1℘1℘11c)) ∩ Ins2k Sk ) “k ℘1℘11c))
“k ℘1℘1℘11c)) ⊕
Ins3k Ik )
“k ℘11c))
“k ℘11c))
“k ℘1℘11c) ∖ ({{∅}}
×k V))) ∩ Ins3k (( Nn ×k Nn ) ∩ (( Ins3k (( Ins3k SIk ((℘1c ×k
V) ∖ (( Ins3k Sk ⊕ Ins2k SIk Sk ) “k ℘1℘1℘11c)) ∩ Ins2k Sk ) “k ℘1℘11c) ∩ Ins2k (( Ins3k SIk ∼ (( Ins3k Sk ⊕ Ins2k SIk Sk ) “k ℘1℘11c) ∩ Ins2k Sk ) “k ℘1℘11c))
“k ℘1℘1℘11c)))
“k ℘11c) ↔ Sfin ( Tfin m,
y)) |
76 | 43, 75 | anbi12i 678 |
. . . . . . . . . . . . . . 15
⊢
((⟪{{y}}, ⟪{m}, {n}⟫⟫ ∈ Ins2k ◡k(({{∅}} ×k {∅}) ∪ ( ∼ (( Ins2k Sk ⊕ Ins3k (( Ins3k ◡k Sk ∖ Ins2k (( Ins2k (( Nn ×k V) ∩ (( Ins2k SIk Sk ∩ Ins3k (( Ins3k SIk ((℘1c ×k
V) ∖ (( Ins3k Sk ⊕ Ins2k SIk Sk ) “k ℘1℘1℘11c)) ∩ Ins2k Sk ) “k ℘1℘11c))
“k ℘1℘1℘11c)) ⊕
Ins3k Ik )
“k ℘11c))
“k ℘11c))
“k ℘1℘11c) ∖ ({{∅}}
×k V))) ∧
⟪{{y}}, ⟪{m}, {n}⟫⟫ ∈ Ins3k (( Ins2k ◡k(({{∅}} ×k {∅}) ∪ ( ∼ (( Ins2k Sk ⊕ Ins3k (( Ins3k ◡k Sk ∖ Ins2k (( Ins2k (( Nn ×k V) ∩ (( Ins2k SIk Sk ∩ Ins3k (( Ins3k SIk ((℘1c ×k
V) ∖ (( Ins3k Sk ⊕ Ins2k SIk Sk ) “k ℘1℘1℘11c)) ∩ Ins2k Sk ) “k ℘1℘11c))
“k ℘1℘1℘11c)) ⊕
Ins3k Ik )
“k ℘11c))
“k ℘11c))
“k ℘1℘11c) ∖ ({{∅}}
×k V))) ∩ Ins3k (( Nn ×k Nn ) ∩ (( Ins3k (( Ins3k SIk ((℘1c ×k
V) ∖ (( Ins3k Sk ⊕ Ins2k SIk Sk ) “k ℘1℘1℘11c)) ∩ Ins2k Sk ) “k ℘1℘11c) ∩ Ins2k (( Ins3k SIk ∼ (( Ins3k Sk ⊕ Ins2k SIk Sk ) “k ℘1℘11c) ∩ Ins2k Sk ) “k ℘1℘11c))
“k ℘1℘1℘11c)))
“k ℘11c)) ↔
(y = Tfin n
∧ Sfin
( Tfin m, y))) |
77 | 37, 38, 76 | 3bitri 262 |
. . . . . . . . . . . . . 14
⊢ (∃t(t = {{y}} ∧ ⟪t,
⟪{m}, {n}⟫⟫ ∈ ( Ins2k ◡k(({{∅}} ×k {∅}) ∪ ( ∼ (( Ins2k Sk ⊕ Ins3k (( Ins3k ◡k Sk ∖ Ins2k (( Ins2k (( Nn ×k V) ∩ (( Ins2k SIk Sk ∩ Ins3k (( Ins3k SIk ((℘1c ×k
V) ∖ (( Ins3k Sk ⊕ Ins2k SIk Sk ) “k ℘1℘1℘11c)) ∩ Ins2k Sk ) “k ℘1℘11c))
“k ℘1℘1℘11c)) ⊕
Ins3k Ik )
“k ℘11c))
“k ℘11c))
“k ℘1℘11c) ∖ ({{∅}}
×k V))) ∩ Ins3k (( Ins2k ◡k(({{∅}} ×k {∅}) ∪ ( ∼ (( Ins2k Sk ⊕ Ins3k (( Ins3k ◡k Sk ∖ Ins2k (( Ins2k (( Nn ×k V) ∩ (( Ins2k SIk Sk ∩ Ins3k (( Ins3k SIk ((℘1c ×k
V) ∖ (( Ins3k Sk ⊕ Ins2k SIk Sk ) “k ℘1℘1℘11c)) ∩ Ins2k Sk ) “k ℘1℘11c))
“k ℘1℘1℘11c)) ⊕
Ins3k Ik )
“k ℘11c))
“k ℘11c))
“k ℘1℘11c) ∖ ({{∅}}
×k V))) ∩ Ins3k (( Nn ×k Nn ) ∩ (( Ins3k (( Ins3k SIk ((℘1c ×k
V) ∖ (( Ins3k Sk ⊕ Ins2k SIk Sk ) “k ℘1℘1℘11c)) ∩ Ins2k Sk ) “k ℘1℘11c) ∩ Ins2k (( Ins3k SIk ∼ (( Ins3k Sk ⊕ Ins2k SIk Sk ) “k ℘1℘11c) ∩ Ins2k Sk ) “k ℘1℘11c))
“k ℘1℘1℘11c)))
“k ℘11c))) ↔
(y = Tfin n
∧ Sfin
( Tfin m, y))) |
78 | 77 | exbii 1582 |
. . . . . . . . . . . . 13
⊢ (∃y∃t(t = {{y}} ∧ ⟪t,
⟪{m}, {n}⟫⟫ ∈ ( Ins2k ◡k(({{∅}} ×k {∅}) ∪ ( ∼ (( Ins2k Sk ⊕ Ins3k (( Ins3k ◡k Sk ∖ Ins2k (( Ins2k (( Nn ×k V) ∩ (( Ins2k SIk Sk ∩ Ins3k (( Ins3k SIk ((℘1c ×k
V) ∖ (( Ins3k Sk ⊕ Ins2k SIk Sk ) “k ℘1℘1℘11c)) ∩ Ins2k Sk ) “k ℘1℘11c))
“k ℘1℘1℘11c)) ⊕
Ins3k Ik )
“k ℘11c))
“k ℘11c))
“k ℘1℘11c) ∖ ({{∅}}
×k V))) ∩ Ins3k (( Ins2k ◡k(({{∅}} ×k {∅}) ∪ ( ∼ (( Ins2k Sk ⊕ Ins3k (( Ins3k ◡k Sk ∖ Ins2k (( Ins2k (( Nn ×k V) ∩ (( Ins2k SIk Sk ∩ Ins3k (( Ins3k SIk ((℘1c ×k
V) ∖ (( Ins3k Sk ⊕ Ins2k SIk Sk ) “k ℘1℘1℘11c)) ∩ Ins2k Sk ) “k ℘1℘11c))
“k ℘1℘1℘11c)) ⊕
Ins3k Ik )
“k ℘11c))
“k ℘11c))
“k ℘1℘11c) ∖ ({{∅}}
×k V))) ∩ Ins3k (( Nn ×k Nn ) ∩ (( Ins3k (( Ins3k SIk ((℘1c ×k
V) ∖ (( Ins3k Sk ⊕ Ins2k SIk Sk ) “k ℘1℘1℘11c)) ∩ Ins2k Sk ) “k ℘1℘11c) ∩ Ins2k (( Ins3k SIk ∼ (( Ins3k Sk ⊕ Ins2k SIk Sk ) “k ℘1℘11c) ∩ Ins2k Sk ) “k ℘1℘11c))
“k ℘1℘1℘11c)))
“k ℘11c))) ↔ ∃y(y = Tfin
n ∧ Sfin ( Tfin m,
y))) |
79 | | tfinex 4486 |
. . . . . . . . . . . . . 14
⊢ Tfin n
∈ V |
80 | | sfineq2 4528 |
. . . . . . . . . . . . . 14
⊢ (y = Tfin
n → ( Sfin ( Tfin m,
y) ↔ Sfin ( Tfin m,
Tfin n))) |
81 | 79, 80 | ceqsexv 2895 |
. . . . . . . . . . . . 13
⊢ (∃y(y = Tfin
n ∧ Sfin ( Tfin m,
y)) ↔ Sfin ( Tfin m,
Tfin n)) |
82 | 33, 78, 81 | 3bitri 262 |
. . . . . . . . . . . 12
⊢ (⟪{m}, {n}⟫
∈ (( Ins2k ◡k(({{∅}} ×k {∅}) ∪ ( ∼ (( Ins2k Sk ⊕ Ins3k (( Ins3k ◡k Sk ∖ Ins2k (( Ins2k (( Nn ×k V) ∩ (( Ins2k SIk Sk ∩ Ins3k (( Ins3k SIk ((℘1c ×k
V) ∖ (( Ins3k Sk ⊕ Ins2k SIk Sk ) “k ℘1℘1℘11c)) ∩ Ins2k Sk ) “k ℘1℘11c))
“k ℘1℘1℘11c)) ⊕
Ins3k Ik )
“k ℘11c))
“k ℘11c))
“k ℘1℘11c) ∖ ({{∅}}
×k V))) ∩ Ins3k (( Ins2k ◡k(({{∅}} ×k {∅}) ∪ ( ∼ (( Ins2k Sk ⊕ Ins3k (( Ins3k ◡k Sk ∖ Ins2k (( Ins2k (( Nn ×k V) ∩ (( Ins2k SIk Sk ∩ Ins3k (( Ins3k SIk ((℘1c ×k
V) ∖ (( Ins3k Sk ⊕ Ins2k SIk Sk ) “k ℘1℘1℘11c)) ∩ Ins2k Sk ) “k ℘1℘11c))
“k ℘1℘1℘11c)) ⊕
Ins3k Ik )
“k ℘11c))
“k ℘11c))
“k ℘1℘11c) ∖ ({{∅}}
×k V))) ∩ Ins3k (( Nn ×k Nn ) ∩ (( Ins3k (( Ins3k SIk ((℘1c ×k
V) ∖ (( Ins3k Sk ⊕ Ins2k SIk Sk ) “k ℘1℘1℘11c)) ∩ Ins2k Sk ) “k ℘1℘11c) ∩ Ins2k (( Ins3k SIk ∼ (( Ins3k Sk ⊕ Ins2k SIk Sk ) “k ℘1℘11c) ∩ Ins2k Sk ) “k ℘1℘11c))
“k ℘1℘1℘11c)))
“k ℘11c))
“k ℘11c) ↔ Sfin ( Tfin m,
Tfin n)) |
83 | 82 | notbii 287 |
. . . . . . . . . . 11
⊢ (¬
⟪{m}, {n}⟫ ∈ ((
Ins2k ◡k(({{∅}} ×k {∅}) ∪ ( ∼ (( Ins2k Sk ⊕ Ins3k (( Ins3k ◡k Sk ∖ Ins2k (( Ins2k (( Nn ×k V) ∩ (( Ins2k SIk Sk ∩ Ins3k (( Ins3k SIk ((℘1c ×k
V) ∖ (( Ins3k Sk ⊕ Ins2k SIk Sk ) “k ℘1℘1℘11c)) ∩ Ins2k Sk ) “k ℘1℘11c))
“k ℘1℘1℘11c)) ⊕
Ins3k Ik )
“k ℘11c))
“k ℘11c))
“k ℘1℘11c) ∖ ({{∅}}
×k V))) ∩ Ins3k (( Ins2k ◡k(({{∅}} ×k {∅}) ∪ ( ∼ (( Ins2k Sk ⊕ Ins3k (( Ins3k ◡k Sk ∖ Ins2k (( Ins2k (( Nn ×k V) ∩ (( Ins2k SIk Sk ∩ Ins3k (( Ins3k SIk ((℘1c ×k
V) ∖ (( Ins3k Sk ⊕ Ins2k SIk Sk ) “k ℘1℘1℘11c)) ∩ Ins2k Sk ) “k ℘1℘11c))
“k ℘1℘1℘11c)) ⊕
Ins3k Ik )
“k ℘11c))
“k ℘11c))
“k ℘1℘11c) ∖ ({{∅}}
×k V))) ∩ Ins3k (( Nn ×k Nn ) ∩ (( Ins3k (( Ins3k SIk ((℘1c ×k
V) ∖ (( Ins3k Sk ⊕ Ins2k SIk Sk ) “k ℘1℘1℘11c)) ∩ Ins2k Sk ) “k ℘1℘11c) ∩ Ins2k (( Ins3k SIk ∼ (( Ins3k Sk ⊕ Ins2k SIk Sk ) “k ℘1℘11c) ∩ Ins2k Sk ) “k ℘1℘11c))
“k ℘1℘1℘11c)))
“k ℘11c))
“k ℘11c) ↔ ¬
Sfin ( Tfin m,
Tfin n)) |
84 | 22, 83 | anbi12i 678 |
. . . . . . . . . 10
⊢ ((⟪{m}, {n}⟫
∈ SIk (( Nn
×k Nn ) ∩ (( Ins3k (( Ins3k SIk ((℘1c ×k
V) ∖ (( Ins3k Sk ⊕ Ins2k SIk Sk ) “k ℘1℘1℘11c)) ∩ Ins2k Sk ) “k ℘1℘11c) ∩ Ins2k (( Ins3k SIk ∼ (( Ins3k Sk ⊕ Ins2k SIk Sk ) “k ℘1℘11c) ∩ Ins2k Sk ) “k ℘1℘11c))
“k ℘1℘1℘11c)) ∧ ¬ ⟪{m}, {n}⟫
∈ (( Ins2k ◡k(({{∅}} ×k {∅}) ∪ ( ∼ (( Ins2k Sk ⊕ Ins3k (( Ins3k ◡k Sk ∖ Ins2k (( Ins2k (( Nn ×k V) ∩ (( Ins2k SIk Sk ∩ Ins3k (( Ins3k SIk ((℘1c ×k
V) ∖ (( Ins3k Sk ⊕ Ins2k SIk Sk ) “k ℘1℘1℘11c)) ∩ Ins2k Sk ) “k ℘1℘11c))
“k ℘1℘1℘11c)) ⊕
Ins3k Ik )
“k ℘11c))
“k ℘11c))
“k ℘1℘11c) ∖ ({{∅}}
×k V))) ∩ Ins3k (( Ins2k ◡k(({{∅}} ×k {∅}) ∪ ( ∼ (( Ins2k Sk ⊕ Ins3k (( Ins3k ◡k Sk ∖ Ins2k (( Ins2k (( Nn ×k V) ∩ (( Ins2k SIk Sk ∩ Ins3k (( Ins3k SIk ((℘1c ×k
V) ∖ (( Ins3k Sk ⊕ Ins2k SIk Sk ) “k ℘1℘1℘11c)) ∩ Ins2k Sk ) “k ℘1℘11c))
“k ℘1℘1℘11c)) ⊕
Ins3k Ik )
“k ℘11c))
“k ℘11c))
“k ℘1℘11c) ∖ ({{∅}}
×k V))) ∩ Ins3k (( Nn ×k Nn ) ∩ (( Ins3k (( Ins3k SIk ((℘1c ×k
V) ∖ (( Ins3k Sk ⊕ Ins2k SIk Sk ) “k ℘1℘1℘11c)) ∩ Ins2k Sk ) “k ℘1℘11c) ∩ Ins2k (( Ins3k SIk ∼ (( Ins3k Sk ⊕ Ins2k SIk Sk ) “k ℘1℘11c) ∩ Ins2k Sk ) “k ℘1℘11c))
“k ℘1℘1℘11c)))
“k ℘11c))
“k ℘11c)) ↔ (
Sfin (m, n) ∧ ¬ Sfin
( Tfin m, Tfin
n))) |
85 | | annim 414 |
. . . . . . . . . 10
⊢ (( Sfin (m,
n) ∧ ¬
Sfin ( Tfin m,
Tfin n)) ↔ ¬ ( Sfin (m,
n) → Sfin ( Tfin m,
Tfin n))) |
86 | 18, 84, 85 | 3bitri 262 |
. . . . . . . . 9
⊢ (⟪{m}, {n}⟫
∈ ( SIk (( Nn
×k Nn ) ∩ (( Ins3k (( Ins3k SIk ((℘1c ×k
V) ∖ (( Ins3k Sk ⊕ Ins2k SIk Sk ) “k ℘1℘1℘11c)) ∩ Ins2k Sk ) “k ℘1℘11c) ∩ Ins2k (( Ins3k SIk ∼ (( Ins3k Sk ⊕ Ins2k SIk Sk ) “k ℘1℘11c) ∩ Ins2k Sk ) “k ℘1℘11c))
“k ℘1℘1℘11c)) ∖ (( Ins2k ◡k(({{∅}} ×k {∅}) ∪ ( ∼ (( Ins2k Sk ⊕ Ins3k (( Ins3k ◡k Sk ∖ Ins2k (( Ins2k (( Nn ×k V) ∩ (( Ins2k SIk Sk ∩ Ins3k (( Ins3k SIk ((℘1c ×k
V) ∖ (( Ins3k Sk ⊕ Ins2k SIk Sk ) “k ℘1℘1℘11c)) ∩ Ins2k Sk ) “k ℘1℘11c))
“k ℘1℘1℘11c)) ⊕
Ins3k Ik )
“k ℘11c))
“k ℘11c))
“k ℘1℘11c) ∖ ({{∅}}
×k V))) ∩ Ins3k (( Ins2k ◡k(({{∅}} ×k {∅}) ∪ ( ∼ (( Ins2k Sk ⊕ Ins3k (( Ins3k ◡k Sk ∖ Ins2k (( Ins2k (( Nn ×k V) ∩ (( Ins2k SIk Sk ∩ Ins3k (( Ins3k SIk ((℘1c ×k
V) ∖ (( Ins3k Sk ⊕ Ins2k SIk Sk ) “k ℘1℘1℘11c)) ∩ Ins2k Sk ) “k ℘1℘11c))
“k ℘1℘1℘11c)) ⊕
Ins3k Ik )
“k ℘11c))
“k ℘11c))
“k ℘1℘11c) ∖ ({{∅}}
×k V))) ∩ Ins3k (( Nn ×k Nn ) ∩ (( Ins3k (( Ins3k SIk ((℘1c ×k
V) ∖ (( Ins3k Sk ⊕ Ins2k SIk Sk ) “k ℘1℘1℘11c)) ∩ Ins2k Sk ) “k ℘1℘11c) ∩ Ins2k (( Ins3k SIk ∼ (( Ins3k Sk ⊕ Ins2k SIk Sk ) “k ℘1℘11c) ∩ Ins2k Sk ) “k ℘1℘11c))
“k ℘1℘1℘11c)))
“k ℘11c))
“k ℘11c)) ↔ ¬
( Sfin (m, n) →
Sfin ( Tfin m,
Tfin n))) |
87 | 16, 17, 86 | 3bitri 262 |
. . . . . . . 8
⊢ (∃t(t = {n} ∧ ⟪t,
{m}⟫ ∈ ◡k( SIk (( Nn
×k Nn ) ∩ (( Ins3k (( Ins3k SIk ((℘1c ×k
V) ∖ (( Ins3k Sk ⊕ Ins2k SIk Sk ) “k ℘1℘1℘11c)) ∩ Ins2k Sk ) “k ℘1℘11c) ∩ Ins2k (( Ins3k SIk ∼ (( Ins3k Sk ⊕ Ins2k SIk Sk ) “k ℘1℘11c) ∩ Ins2k Sk ) “k ℘1℘11c))
“k ℘1℘1℘11c)) ∖ (( Ins2k ◡k(({{∅}} ×k {∅}) ∪ ( ∼ (( Ins2k Sk ⊕ Ins3k (( Ins3k ◡k Sk ∖ Ins2k (( Ins2k (( Nn ×k V) ∩ (( Ins2k SIk Sk ∩ Ins3k (( Ins3k SIk ((℘1c ×k
V) ∖ (( Ins3k Sk ⊕ Ins2k SIk Sk ) “k ℘1℘1℘11c)) ∩ Ins2k Sk ) “k ℘1℘11c))
“k ℘1℘1℘11c)) ⊕
Ins3k Ik )
“k ℘11c))
“k ℘11c))
“k ℘1℘11c) ∖ ({{∅}}
×k V))) ∩ Ins3k (( Ins2k ◡k(({{∅}} ×k {∅}) ∪ ( ∼ (( Ins2k Sk ⊕ Ins3k (( Ins3k ◡k Sk ∖ Ins2k (( Ins2k (( Nn ×k V) ∩ (( Ins2k SIk Sk ∩ Ins3k (( Ins3k SIk ((℘1c ×k
V) ∖ (( Ins3k Sk ⊕ Ins2k SIk Sk ) “k ℘1℘1℘11c)) ∩ Ins2k Sk ) “k ℘1℘11c))
“k ℘1℘1℘11c)) ⊕
Ins3k Ik )
“k ℘11c))
“k ℘11c))
“k ℘1℘11c) ∖ ({{∅}}
×k V))) ∩ Ins3k (( Nn ×k Nn ) ∩ (( Ins3k (( Ins3k SIk ((℘1c ×k
V) ∖ (( Ins3k Sk ⊕ Ins2k SIk Sk ) “k ℘1℘1℘11c)) ∩ Ins2k Sk ) “k ℘1℘11c) ∩ Ins2k (( Ins3k SIk ∼ (( Ins3k Sk ⊕ Ins2k SIk Sk ) “k ℘1℘11c) ∩ Ins2k Sk ) “k ℘1℘11c))
“k ℘1℘1℘11c)))
“k ℘11c))
“k ℘11c))) ↔ ¬
( Sfin (m, n) →
Sfin ( Tfin m,
Tfin n))) |
88 | 87 | exbii 1582 |
. . . . . . 7
⊢ (∃n∃t(t = {n} ∧ ⟪t,
{m}⟫ ∈ ◡k( SIk (( Nn
×k Nn ) ∩ (( Ins3k (( Ins3k SIk ((℘1c ×k
V) ∖ (( Ins3k Sk ⊕ Ins2k SIk Sk ) “k ℘1℘1℘11c)) ∩ Ins2k Sk ) “k ℘1℘11c) ∩ Ins2k (( Ins3k SIk ∼ (( Ins3k Sk ⊕ Ins2k SIk Sk ) “k ℘1℘11c) ∩ Ins2k Sk ) “k ℘1℘11c))
“k ℘1℘1℘11c)) ∖ (( Ins2k ◡k(({{∅}} ×k {∅}) ∪ ( ∼ (( Ins2k Sk ⊕ Ins3k (( Ins3k ◡k Sk ∖ Ins2k (( Ins2k (( Nn ×k V) ∩ (( Ins2k SIk Sk ∩ Ins3k (( Ins3k SIk ((℘1c ×k
V) ∖ (( Ins3k Sk ⊕ Ins2k SIk Sk ) “k ℘1℘1℘11c)) ∩ Ins2k Sk ) “k ℘1℘11c))
“k ℘1℘1℘11c)) ⊕
Ins3k Ik )
“k ℘11c))
“k ℘11c))
“k ℘1℘11c) ∖ ({{∅}}
×k V))) ∩ Ins3k (( Ins2k ◡k(({{∅}} ×k {∅}) ∪ ( ∼ (( Ins2k Sk ⊕ Ins3k (( Ins3k ◡k Sk ∖ Ins2k (( Ins2k (( Nn ×k V) ∩ (( Ins2k SIk Sk ∩ Ins3k (( Ins3k SIk ((℘1c ×k
V) ∖ (( Ins3k Sk ⊕ Ins2k SIk Sk ) “k ℘1℘1℘11c)) ∩ Ins2k Sk ) “k ℘1℘11c))
“k ℘1℘1℘11c)) ⊕
Ins3k Ik )
“k ℘11c))
“k ℘11c))
“k ℘1℘11c) ∖ ({{∅}}
×k V))) ∩ Ins3k (( Nn ×k Nn ) ∩ (( Ins3k (( Ins3k SIk ((℘1c ×k
V) ∖ (( Ins3k Sk ⊕ Ins2k SIk Sk ) “k ℘1℘1℘11c)) ∩ Ins2k Sk ) “k ℘1℘11c) ∩ Ins2k (( Ins3k SIk ∼ (( Ins3k Sk ⊕ Ins2k SIk Sk ) “k ℘1℘11c) ∩ Ins2k Sk ) “k ℘1℘11c))
“k ℘1℘1℘11c)))
“k ℘11c))
“k ℘11c))) ↔ ∃n ¬ (
Sfin (m, n) →
Sfin ( Tfin m,
Tfin n))) |
89 | 4, 12, 88 | 3bitri 262 |
. . . . . 6
⊢ ({m} ∈ (◡k( SIk (( Nn
×k Nn ) ∩ (( Ins3k (( Ins3k SIk ((℘1c ×k
V) ∖ (( Ins3k Sk ⊕ Ins2k SIk Sk ) “k ℘1℘1℘11c)) ∩ Ins2k Sk ) “k ℘1℘11c) ∩ Ins2k (( Ins3k SIk ∼ (( Ins3k Sk ⊕ Ins2k SIk Sk ) “k ℘1℘11c) ∩ Ins2k Sk ) “k ℘1℘11c))
“k ℘1℘1℘11c)) ∖ (( Ins2k ◡k(({{∅}} ×k {∅}) ∪ ( ∼ (( Ins2k Sk ⊕ Ins3k (( Ins3k ◡k Sk ∖ Ins2k (( Ins2k (( Nn ×k V) ∩ (( Ins2k SIk Sk ∩ Ins3k (( Ins3k SIk ((℘1c ×k
V) ∖ (( Ins3k Sk ⊕ Ins2k SIk Sk ) “k ℘1℘1℘11c)) ∩ Ins2k Sk ) “k ℘1℘11c))
“k ℘1℘1℘11c)) ⊕
Ins3k Ik )
“k ℘11c))
“k ℘11c))
“k ℘1℘11c) ∖ ({{∅}}
×k V))) ∩ Ins3k (( Ins2k ◡k(({{∅}} ×k {∅}) ∪ ( ∼ (( Ins2k Sk ⊕ Ins3k (( Ins3k ◡k Sk ∖ Ins2k (( Ins2k (( Nn ×k V) ∩ (( Ins2k SIk Sk ∩ Ins3k (( Ins3k SIk ((℘1c ×k
V) ∖ (( Ins3k Sk ⊕ Ins2k SIk Sk ) “k ℘1℘1℘11c)) ∩ Ins2k Sk ) “k ℘1℘11c))
“k ℘1℘1℘11c)) ⊕
Ins3k Ik )
“k ℘11c))
“k ℘11c))
“k ℘1℘11c) ∖ ({{∅}}
×k V))) ∩ Ins3k (( Nn ×k Nn ) ∩ (( Ins3k (( Ins3k SIk ((℘1c ×k
V) ∖ (( Ins3k Sk ⊕ Ins2k SIk Sk ) “k ℘1℘1℘11c)) ∩ Ins2k Sk ) “k ℘1℘11c) ∩ Ins2k (( Ins3k SIk ∼ (( Ins3k Sk ⊕ Ins2k SIk Sk ) “k ℘1℘11c) ∩ Ins2k Sk ) “k ℘1℘11c))
“k ℘1℘1℘11c)))
“k ℘11c))
“k ℘11c))
“k 1c) ↔ ∃n ¬ (
Sfin (m, n) →
Sfin ( Tfin m,
Tfin n))) |
90 | 89 | notbii 287 |
. . . . 5
⊢ (¬ {m} ∈ (◡k( SIk (( Nn
×k Nn ) ∩ (( Ins3k (( Ins3k SIk ((℘1c ×k
V) ∖ (( Ins3k Sk ⊕ Ins2k SIk Sk ) “k ℘1℘1℘11c)) ∩ Ins2k Sk ) “k ℘1℘11c) ∩ Ins2k (( Ins3k SIk ∼ (( Ins3k Sk ⊕ Ins2k SIk Sk ) “k ℘1℘11c) ∩ Ins2k Sk ) “k ℘1℘11c))
“k ℘1℘1℘11c)) ∖ (( Ins2k ◡k(({{∅}} ×k {∅}) ∪ ( ∼ (( Ins2k Sk ⊕ Ins3k (( Ins3k ◡k Sk ∖ Ins2k (( Ins2k (( Nn ×k V) ∩ (( Ins2k SIk Sk ∩ Ins3k (( Ins3k SIk ((℘1c ×k
V) ∖ (( Ins3k Sk ⊕ Ins2k SIk Sk ) “k ℘1℘1℘11c)) ∩ Ins2k Sk ) “k ℘1℘11c))
“k ℘1℘1℘11c)) ⊕
Ins3k Ik )
“k ℘11c))
“k ℘11c))
“k ℘1℘11c) ∖ ({{∅}}
×k V))) ∩ Ins3k (( Ins2k ◡k(({{∅}} ×k {∅}) ∪ ( ∼ (( Ins2k Sk ⊕ Ins3k (( Ins3k ◡k Sk ∖ Ins2k (( Ins2k (( Nn ×k V) ∩ (( Ins2k SIk Sk ∩ Ins3k (( Ins3k SIk ((℘1c ×k
V) ∖ (( Ins3k Sk ⊕ Ins2k SIk Sk ) “k ℘1℘1℘11c)) ∩ Ins2k Sk ) “k ℘1℘11c))
“k ℘1℘1℘11c)) ⊕
Ins3k Ik )
“k ℘11c))
“k ℘11c))
“k ℘1℘11c) ∖ ({{∅}}
×k V))) ∩ Ins3k (( Nn ×k Nn ) ∩ (( Ins3k (( Ins3k SIk ((℘1c ×k
V) ∖ (( Ins3k Sk ⊕ Ins2k SIk Sk ) “k ℘1℘1℘11c)) ∩ Ins2k Sk ) “k ℘1℘11c) ∩ Ins2k (( Ins3k SIk ∼ (( Ins3k Sk ⊕ Ins2k SIk Sk ) “k ℘1℘11c) ∩ Ins2k Sk ) “k ℘1℘11c))
“k ℘1℘1℘11c)))
“k ℘11c))
“k ℘11c))
“k 1c) ↔ ¬ ∃n ¬ (
Sfin (m, n) →
Sfin ( Tfin m,
Tfin n))) |
91 | 3 | elcompl 3226 |
. . . . 5
⊢ ({m} ∈ ∼ (◡k( SIk (( Nn
×k Nn ) ∩ (( Ins3k (( Ins3k SIk ((℘1c ×k
V) ∖ (( Ins3k Sk ⊕ Ins2k SIk Sk ) “k ℘1℘1℘11c)) ∩ Ins2k Sk ) “k ℘1℘11c) ∩ Ins2k (( Ins3k SIk ∼ (( Ins3k Sk ⊕ Ins2k SIk Sk ) “k ℘1℘11c) ∩ Ins2k Sk ) “k ℘1℘11c))
“k ℘1℘1℘11c)) ∖ (( Ins2k ◡k(({{∅}} ×k {∅}) ∪ ( ∼ (( Ins2k Sk ⊕ Ins3k (( Ins3k ◡k Sk ∖ Ins2k (( Ins2k (( Nn ×k V) ∩ (( Ins2k SIk Sk ∩ Ins3k (( Ins3k SIk ((℘1c ×k
V) ∖ (( Ins3k Sk ⊕ Ins2k SIk Sk ) “k ℘1℘1℘11c)) ∩ Ins2k Sk ) “k ℘1℘11c))
“k ℘1℘1℘11c)) ⊕
Ins3k Ik )
“k ℘11c))
“k ℘11c))
“k ℘1℘11c) ∖ ({{∅}}
×k V))) ∩ Ins3k (( Ins2k ◡k(({{∅}} ×k {∅}) ∪ ( ∼ (( Ins2k Sk ⊕ Ins3k (( Ins3k ◡k Sk ∖ Ins2k (( Ins2k (( Nn ×k V) ∩ (( Ins2k SIk Sk ∩ Ins3k (( Ins3k SIk ((℘1c ×k
V) ∖ (( Ins3k Sk ⊕ Ins2k SIk Sk ) “k ℘1℘1℘11c)) ∩ Ins2k Sk ) “k ℘1℘11c))
“k ℘1℘1℘11c)) ⊕
Ins3k Ik )
“k ℘11c))
“k ℘11c))
“k ℘1℘11c) ∖ ({{∅}}
×k V))) ∩ Ins3k (( Nn ×k Nn ) ∩ (( Ins3k (( Ins3k SIk ((℘1c ×k
V) ∖ (( Ins3k Sk ⊕ Ins2k SIk Sk ) “k ℘1℘1℘11c)) ∩ Ins2k Sk ) “k ℘1℘11c) ∩ Ins2k (( Ins3k SIk ∼ (( Ins3k Sk ⊕ Ins2k SIk Sk ) “k ℘1℘11c) ∩ Ins2k Sk ) “k ℘1℘11c))
“k ℘1℘1℘11c)))
“k ℘11c))
“k ℘11c))
“k 1c) ↔ ¬ {m} ∈ (◡k( SIk (( Nn
×k Nn ) ∩ (( Ins3k (( Ins3k SIk ((℘1c ×k
V) ∖ (( Ins3k Sk ⊕ Ins2k SIk Sk ) “k ℘1℘1℘11c)) ∩ Ins2k Sk ) “k ℘1℘11c) ∩ Ins2k (( Ins3k SIk ∼ (( Ins3k Sk ⊕ Ins2k SIk Sk ) “k ℘1℘11c) ∩ Ins2k Sk ) “k ℘1℘11c))
“k ℘1℘1℘11c)) ∖ (( Ins2k ◡k(({{∅}} ×k {∅}) ∪ ( ∼ (( Ins2k Sk ⊕ Ins3k (( Ins3k ◡k Sk ∖ Ins2k (( Ins2k (( Nn ×k V) ∩ (( Ins2k SIk Sk ∩ Ins3k (( Ins3k SIk ((℘1c ×k
V) ∖ (( Ins3k Sk ⊕ Ins2k SIk Sk ) “k ℘1℘1℘11c)) ∩ Ins2k Sk ) “k ℘1℘11c))
“k ℘1℘1℘11c)) ⊕
Ins3k Ik )
“k ℘11c))
“k ℘11c))
“k ℘1℘11c) ∖ ({{∅}}
×k V))) ∩ Ins3k (( Ins2k ◡k(({{∅}} ×k {∅}) ∪ ( ∼ (( Ins2k Sk ⊕ Ins3k (( Ins3k ◡k Sk ∖ Ins2k (( Ins2k (( Nn ×k V) ∩ (( Ins2k SIk Sk ∩ Ins3k (( Ins3k SIk ((℘1c ×k
V) ∖ (( Ins3k Sk ⊕ Ins2k SIk Sk ) “k ℘1℘1℘11c)) ∩ Ins2k Sk ) “k ℘1℘11c))
“k ℘1℘1℘11c)) ⊕
Ins3k Ik )
“k ℘11c))
“k ℘11c))
“k ℘1℘11c) ∖ ({{∅}}
×k V))) ∩ Ins3k (( Nn ×k Nn ) ∩ (( Ins3k (( Ins3k SIk ((℘1c ×k
V) ∖ (( Ins3k Sk ⊕ Ins2k SIk Sk ) “k ℘1℘1℘11c)) ∩ Ins2k Sk ) “k ℘1℘11c) ∩ Ins2k (( Ins3k SIk ∼ (( Ins3k Sk ⊕ Ins2k SIk Sk ) “k ℘1℘11c) ∩ Ins2k Sk ) “k ℘1℘11c))
“k ℘1℘1℘11c)))
“k ℘11c))
“k ℘11c))
“k 1c)) |
92 | | alex 1572 |
. . . . 5
⊢ (∀n( Sfin (m,
n) → Sfin ( Tfin m,
Tfin n)) ↔ ¬ ∃n ¬ (
Sfin (m, n) →
Sfin ( Tfin m,
Tfin n))) |
93 | 90, 91, 92 | 3bitr4i 268 |
. . . 4
⊢ ({m} ∈ ∼ (◡k( SIk (( Nn
×k Nn ) ∩ (( Ins3k (( Ins3k SIk ((℘1c ×k
V) ∖ (( Ins3k Sk ⊕ Ins2k SIk Sk ) “k ℘1℘1℘11c)) ∩ Ins2k Sk ) “k ℘1℘11c) ∩ Ins2k (( Ins3k SIk ∼ (( Ins3k Sk ⊕ Ins2k SIk Sk ) “k ℘1℘11c) ∩ Ins2k Sk ) “k ℘1℘11c))
“k ℘1℘1℘11c)) ∖ (( Ins2k ◡k(({{∅}} ×k {∅}) ∪ ( ∼ (( Ins2k Sk ⊕ Ins3k (( Ins3k ◡k Sk ∖ Ins2k (( Ins2k (( Nn ×k V) ∩ (( Ins2k SIk Sk ∩ Ins3k (( Ins3k SIk ((℘1c ×k
V) ∖ (( Ins3k Sk ⊕ Ins2k SIk Sk ) “k ℘1℘1℘11c)) ∩ Ins2k Sk ) “k ℘1℘11c))
“k ℘1℘1℘11c)) ⊕
Ins3k Ik )
“k ℘11c))
“k ℘11c))
“k ℘1℘11c) ∖ ({{∅}}
×k V))) ∩ Ins3k (( Ins2k ◡k(({{∅}} ×k {∅}) ∪ ( ∼ (( Ins2k Sk ⊕ Ins3k (( Ins3k ◡k Sk ∖ Ins2k (( Ins2k (( Nn ×k V) ∩ (( Ins2k SIk Sk ∩ Ins3k (( Ins3k SIk ((℘1c ×k
V) ∖ (( Ins3k Sk ⊕ Ins2k SIk Sk ) “k ℘1℘1℘11c)) ∩ Ins2k Sk ) “k ℘1℘11c))
“k ℘1℘1℘11c)) ⊕
Ins3k Ik )
“k ℘11c))
“k ℘11c))
“k ℘1℘11c) ∖ ({{∅}}
×k V))) ∩ Ins3k (( Nn ×k Nn ) ∩ (( Ins3k (( Ins3k SIk ((℘1c ×k
V) ∖ (( Ins3k Sk ⊕ Ins2k SIk Sk ) “k ℘1℘1℘11c)) ∩ Ins2k Sk ) “k ℘1℘11c) ∩ Ins2k (( Ins3k SIk ∼ (( Ins3k Sk ⊕ Ins2k SIk Sk ) “k ℘1℘11c) ∩ Ins2k Sk ) “k ℘1℘11c))
“k ℘1℘1℘11c)))
“k ℘11c))
“k ℘11c))
“k 1c) ↔ ∀n( Sfin (m,
n) → Sfin ( Tfin m,
Tfin n))) |
94 | 2, 93 | bitri 240 |
. . 3
⊢ (m ∈
⋃1 ∼ (◡k( SIk (( Nn
×k Nn ) ∩ (( Ins3k (( Ins3k SIk ((℘1c ×k
V) ∖ (( Ins3k Sk ⊕ Ins2k SIk Sk ) “k ℘1℘1℘11c)) ∩ Ins2k Sk ) “k ℘1℘11c) ∩ Ins2k (( Ins3k SIk ∼ (( Ins3k Sk ⊕ Ins2k SIk Sk ) “k ℘1℘11c) ∩ Ins2k Sk ) “k ℘1℘11c))
“k ℘1℘1℘11c)) ∖ (( Ins2k ◡k(({{∅}} ×k {∅}) ∪ ( ∼ (( Ins2k Sk ⊕ Ins3k (( Ins3k ◡k Sk ∖ Ins2k (( Ins2k (( Nn ×k V) ∩ (( Ins2k SIk Sk ∩ Ins3k (( Ins3k SIk ((℘1c ×k
V) ∖ (( Ins3k Sk ⊕ Ins2k SIk Sk ) “k ℘1℘1℘11c)) ∩ Ins2k Sk ) “k ℘1℘11c))
“k ℘1℘1℘11c)) ⊕
Ins3k Ik )
“k ℘11c))
“k ℘11c))
“k ℘1℘11c) ∖ ({{∅}}
×k V))) ∩ Ins3k (( Ins2k ◡k(({{∅}} ×k {∅}) ∪ ( ∼ (( Ins2k Sk ⊕ Ins3k (( Ins3k ◡k Sk ∖ Ins2k (( Ins2k (( Nn ×k V) ∩ (( Ins2k SIk Sk ∩ Ins3k (( Ins3k SIk ((℘1c ×k
V) ∖ (( Ins3k Sk ⊕ Ins2k SIk Sk ) “k ℘1℘1℘11c)) ∩ Ins2k Sk ) “k ℘1℘11c))
“k ℘1℘1℘11c)) ⊕
Ins3k Ik )
“k ℘11c))
“k ℘11c))
“k ℘1℘11c) ∖ ({{∅}}
×k V))) ∩ Ins3k (( Nn ×k Nn ) ∩ (( Ins3k (( Ins3k SIk ((℘1c ×k
V) ∖ (( Ins3k Sk ⊕ Ins2k SIk Sk ) “k ℘1℘1℘11c)) ∩ Ins2k Sk ) “k ℘1℘11c) ∩ Ins2k (( Ins3k SIk ∼ (( Ins3k Sk ⊕ Ins2k SIk Sk ) “k ℘1℘11c) ∩ Ins2k Sk ) “k ℘1℘11c))
“k ℘1℘1℘11c)))
“k ℘11c))
“k ℘11c))
“k 1c) ↔ ∀n( Sfin (m,
n) → Sfin ( Tfin m,
Tfin n))) |
95 | 94 | abbi2i 2465 |
. 2
⊢ ⋃1
∼ (◡k( SIk (( Nn
×k Nn ) ∩ (( Ins3k (( Ins3k SIk ((℘1c ×k
V) ∖ (( Ins3k Sk ⊕ Ins2k SIk Sk ) “k ℘1℘1℘11c)) ∩ Ins2k Sk ) “k ℘1℘11c) ∩ Ins2k (( Ins3k SIk ∼ (( Ins3k Sk ⊕ Ins2k SIk Sk ) “k ℘1℘11c) ∩ Ins2k Sk ) “k ℘1℘11c))
“k ℘1℘1℘11c)) ∖ (( Ins2k ◡k(({{∅}} ×k {∅}) ∪ ( ∼ (( Ins2k Sk ⊕ Ins3k (( Ins3k ◡k Sk ∖ Ins2k (( Ins2k (( Nn ×k V) ∩ (( Ins2k SIk Sk ∩ Ins3k (( Ins3k SIk ((℘1c ×k
V) ∖ (( Ins3k Sk ⊕ Ins2k SIk Sk ) “k ℘1℘1℘11c)) ∩ Ins2k Sk ) “k ℘1℘11c))
“k ℘1℘1℘11c)) ⊕
Ins3k Ik )
“k ℘11c))
“k ℘11c))
“k ℘1℘11c) ∖ ({{∅}}
×k V))) ∩ Ins3k (( Ins2k ◡k(({{∅}} ×k {∅}) ∪ ( ∼ (( Ins2k Sk ⊕ Ins3k (( Ins3k ◡k Sk ∖ Ins2k (( Ins2k (( Nn ×k V) ∩ (( Ins2k SIk Sk ∩ Ins3k (( Ins3k SIk ((℘1c ×k
V) ∖ (( Ins3k Sk ⊕ Ins2k SIk Sk ) “k ℘1℘1℘11c)) ∩ Ins2k Sk ) “k ℘1℘11c))
“k ℘1℘1℘11c)) ⊕
Ins3k Ik )
“k ℘11c))
“k ℘11c))
“k ℘1℘11c) ∖ ({{∅}}
×k V))) ∩ Ins3k (( Nn ×k Nn ) ∩ (( Ins3k (( Ins3k SIk ((℘1c ×k
V) ∖ (( Ins3k Sk ⊕ Ins2k SIk Sk ) “k ℘1℘1℘11c)) ∩ Ins2k Sk ) “k ℘1℘11c) ∩ Ins2k (( Ins3k SIk ∼ (( Ins3k Sk ⊕ Ins2k SIk Sk ) “k ℘1℘11c) ∩ Ins2k Sk ) “k ℘1℘11c))
“k ℘1℘1℘11c)))
“k ℘11c))
“k ℘11c))
“k 1c) = {m ∣ ∀n( Sfin (m,
n) → Sfin ( Tfin m,
Tfin n))} |
96 | | srelkex 4526 |
. . . . . . . 8
⊢ (( Nn ×k Nn ) ∩ (( Ins3k (( Ins3k SIk ((℘1c ×k
V) ∖ (( Ins3k Sk ⊕ Ins2k SIk Sk ) “k ℘1℘1℘11c)) ∩ Ins2k Sk ) “k ℘1℘11c) ∩ Ins2k (( Ins3k SIk ∼ (( Ins3k Sk ⊕ Ins2k SIk Sk ) “k ℘1℘11c) ∩ Ins2k Sk ) “k ℘1℘11c))
“k ℘1℘1℘11c)) ∈ V |
97 | 96 | sikex 4298 |
. . . . . . 7
⊢ SIk (( Nn
×k Nn ) ∩ (( Ins3k (( Ins3k SIk ((℘1c ×k
V) ∖ (( Ins3k Sk ⊕ Ins2k SIk Sk ) “k ℘1℘1℘11c)) ∩ Ins2k Sk ) “k ℘1℘11c) ∩ Ins2k (( Ins3k SIk ∼ (( Ins3k Sk ⊕ Ins2k SIk Sk ) “k ℘1℘11c) ∩ Ins2k Sk ) “k ℘1℘11c))
“k ℘1℘1℘11c)) ∈ V |
98 | | tfinrelkex 4488 |
. . . . . . . . . . 11
⊢ (({{∅}} ×k {∅}) ∪ ( ∼ (( Ins2k Sk ⊕ Ins3k (( Ins3k ◡k Sk ∖ Ins2k (( Ins2k (( Nn ×k V) ∩ (( Ins2k SIk Sk ∩ Ins3k (( Ins3k SIk ((℘1c ×k
V) ∖ (( Ins3k Sk ⊕ Ins2k SIk Sk ) “k ℘1℘1℘11c)) ∩ Ins2k Sk ) “k ℘1℘11c))
“k ℘1℘1℘11c)) ⊕
Ins3k Ik )
“k ℘11c))
“k ℘11c))
“k ℘1℘11c) ∖ ({{∅}}
×k V))) ∈
V |
99 | 98 | cnvkex 4288 |
. . . . . . . . . 10
⊢ ◡k(({{∅}} ×k {∅}) ∪ ( ∼ (( Ins2k Sk ⊕ Ins3k (( Ins3k ◡k Sk ∖ Ins2k (( Ins2k (( Nn ×k V) ∩ (( Ins2k SIk Sk ∩ Ins3k (( Ins3k SIk ((℘1c ×k
V) ∖ (( Ins3k Sk ⊕ Ins2k SIk Sk ) “k ℘1℘1℘11c)) ∩ Ins2k Sk ) “k ℘1℘11c))
“k ℘1℘1℘11c)) ⊕
Ins3k Ik )
“k ℘11c))
“k ℘11c))
“k ℘1℘11c) ∖ ({{∅}}
×k V))) ∈
V |
100 | 99 | ins2kex 4308 |
. . . . . . . . 9
⊢ Ins2k ◡k(({{∅}} ×k {∅}) ∪ ( ∼ (( Ins2k Sk ⊕ Ins3k (( Ins3k ◡k Sk ∖ Ins2k (( Ins2k (( Nn ×k V) ∩ (( Ins2k SIk Sk ∩ Ins3k (( Ins3k SIk ((℘1c ×k
V) ∖ (( Ins3k Sk ⊕ Ins2k SIk Sk ) “k ℘1℘1℘11c)) ∩ Ins2k Sk ) “k ℘1℘11c))
“k ℘1℘1℘11c)) ⊕
Ins3k Ik )
“k ℘11c))
“k ℘11c))
“k ℘1℘11c) ∖ ({{∅}}
×k V))) ∈
V |
101 | 96 | ins3kex 4309 |
. . . . . . . . . . . 12
⊢ Ins3k (( Nn ×k Nn ) ∩ (( Ins3k (( Ins3k SIk ((℘1c ×k
V) ∖ (( Ins3k Sk ⊕ Ins2k SIk Sk ) “k ℘1℘1℘11c)) ∩ Ins2k Sk ) “k ℘1℘11c) ∩ Ins2k (( Ins3k SIk ∼ (( Ins3k Sk ⊕ Ins2k SIk Sk ) “k ℘1℘11c) ∩ Ins2k Sk ) “k ℘1℘11c))
“k ℘1℘1℘11c)) ∈ V |
102 | 100, 101 | inex 4106 |
. . . . . . . . . . 11
⊢ ( Ins2k ◡k(({{∅}} ×k {∅}) ∪ ( ∼ (( Ins2k Sk ⊕ Ins3k (( Ins3k ◡k Sk ∖ Ins2k (( Ins2k (( Nn ×k V) ∩ (( Ins2k SIk Sk ∩ Ins3k (( Ins3k SIk ((℘1c ×k
V) ∖ (( Ins3k Sk ⊕ Ins2k SIk Sk ) “k ℘1℘1℘11c)) ∩ Ins2k Sk ) “k ℘1℘11c))
“k ℘1℘1℘11c)) ⊕
Ins3k Ik )
“k ℘11c))
“k ℘11c))
“k ℘1℘11c) ∖ ({{∅}}
×k V))) ∩ Ins3k (( Nn ×k Nn ) ∩ (( Ins3k (( Ins3k SIk ((℘1c ×k
V) ∖ (( Ins3k Sk ⊕ Ins2k SIk Sk ) “k ℘1℘1℘11c)) ∩ Ins2k Sk ) “k ℘1℘11c) ∩ Ins2k (( Ins3k SIk ∼ (( Ins3k Sk ⊕ Ins2k SIk Sk ) “k ℘1℘11c) ∩ Ins2k Sk ) “k ℘1℘11c))
“k ℘1℘1℘11c))) ∈ V |
103 | | 1cex 4143 |
. . . . . . . . . . . 12
⊢
1c ∈
V |
104 | 103 | pw1ex 4304 |
. . . . . . . . . . 11
⊢ ℘11c ∈ V |
105 | 102, 104 | imakex 4301 |
. . . . . . . . . 10
⊢ (( Ins2k ◡k(({{∅}} ×k {∅}) ∪ ( ∼ (( Ins2k Sk ⊕ Ins3k (( Ins3k ◡k Sk ∖ Ins2k (( Ins2k (( Nn ×k V) ∩ (( Ins2k SIk Sk ∩ Ins3k (( Ins3k SIk ((℘1c ×k
V) ∖ (( Ins3k Sk ⊕ Ins2k SIk Sk ) “k ℘1℘1℘11c)) ∩ Ins2k Sk ) “k ℘1℘11c))
“k ℘1℘1℘11c)) ⊕
Ins3k Ik )
“k ℘11c))
“k ℘11c))
“k ℘1℘11c) ∖ ({{∅}}
×k V))) ∩ Ins3k (( Nn ×k Nn ) ∩ (( Ins3k (( Ins3k SIk ((℘1c ×k
V) ∖ (( Ins3k Sk ⊕ Ins2k SIk Sk ) “k ℘1℘1℘11c)) ∩ Ins2k Sk ) “k ℘1℘11c) ∩ Ins2k (( Ins3k SIk ∼ (( Ins3k Sk ⊕ Ins2k SIk Sk ) “k ℘1℘11c) ∩ Ins2k Sk ) “k ℘1℘11c))
“k ℘1℘1℘11c)))
“k ℘11c) ∈ V |
106 | 105 | ins3kex 4309 |
. . . . . . . . 9
⊢ Ins3k (( Ins2k ◡k(({{∅}} ×k {∅}) ∪ ( ∼ (( Ins2k Sk ⊕ Ins3k (( Ins3k ◡k Sk ∖ Ins2k (( Ins2k (( Nn ×k V) ∩ (( Ins2k SIk Sk ∩ Ins3k (( Ins3k SIk ((℘1c ×k
V) ∖ (( Ins3k Sk ⊕ Ins2k SIk Sk ) “k ℘1℘1℘11c)) ∩ Ins2k Sk ) “k ℘1℘11c))
“k ℘1℘1℘11c)) ⊕
Ins3k Ik )
“k ℘11c))
“k ℘11c))
“k ℘1℘11c) ∖ ({{∅}}
×k V))) ∩ Ins3k (( Nn ×k Nn ) ∩ (( Ins3k (( Ins3k SIk ((℘1c ×k
V) ∖ (( Ins3k Sk ⊕ Ins2k SIk Sk ) “k ℘1℘1℘11c)) ∩ Ins2k Sk ) “k ℘1℘11c) ∩ Ins2k (( Ins3k SIk ∼ (( Ins3k Sk ⊕ Ins2k SIk Sk ) “k ℘1℘11c) ∩ Ins2k Sk ) “k ℘1℘11c))
“k ℘1℘1℘11c)))
“k ℘11c) ∈ V |
107 | 100, 106 | inex 4106 |
. . . . . . . 8
⊢ ( Ins2k ◡k(({{∅}} ×k {∅}) ∪ ( ∼ (( Ins2k Sk ⊕ Ins3k (( Ins3k ◡k Sk ∖ Ins2k (( Ins2k (( Nn ×k V) ∩ (( Ins2k SIk Sk ∩ Ins3k (( Ins3k SIk ((℘1c ×k
V) ∖ (( Ins3k Sk ⊕ Ins2k SIk Sk ) “k ℘1℘1℘11c)) ∩ Ins2k Sk ) “k ℘1℘11c))
“k ℘1℘1℘11c)) ⊕
Ins3k Ik )
“k ℘11c))
“k ℘11c))
“k ℘1℘11c) ∖ ({{∅}}
×k V))) ∩ Ins3k (( Ins2k ◡k(({{∅}} ×k {∅}) ∪ ( ∼ (( Ins2k Sk ⊕ Ins3k (( Ins3k ◡k Sk ∖ Ins2k (( Ins2k (( Nn ×k V) ∩ (( Ins2k SIk Sk ∩ Ins3k (( Ins3k SIk ((℘1c ×k
V) ∖ (( Ins3k Sk ⊕ Ins2k SIk Sk ) “k ℘1℘1℘11c)) ∩ Ins2k Sk ) “k ℘1℘11c))
“k ℘1℘1℘11c)) ⊕
Ins3k Ik )
“k ℘11c))
“k ℘11c))
“k ℘1℘11c) ∖ ({{∅}}
×k V))) ∩ Ins3k (( Nn ×k Nn ) ∩ (( Ins3k (( Ins3k SIk ((℘1c ×k
V) ∖ (( Ins3k Sk ⊕ Ins2k SIk Sk ) “k ℘1℘1℘11c)) ∩ Ins2k Sk ) “k ℘1℘11c) ∩ Ins2k (( Ins3k SIk ∼ (( Ins3k Sk ⊕ Ins2k SIk Sk ) “k ℘1℘11c) ∩ Ins2k Sk ) “k ℘1℘11c))
“k ℘1℘1℘11c)))
“k ℘11c)) ∈ V |
108 | 107, 104 | imakex 4301 |
. . . . . . 7
⊢ (( Ins2k ◡k(({{∅}} ×k {∅}) ∪ ( ∼ (( Ins2k Sk ⊕ Ins3k (( Ins3k ◡k Sk ∖ Ins2k (( Ins2k (( Nn ×k V) ∩ (( Ins2k SIk Sk ∩ Ins3k (( Ins3k SIk ((℘1c ×k
V) ∖ (( Ins3k Sk ⊕ Ins2k SIk Sk ) “k ℘1℘1℘11c)) ∩ Ins2k Sk ) “k ℘1℘11c))
“k ℘1℘1℘11c)) ⊕
Ins3k Ik )
“k ℘11c))
“k ℘11c))
“k ℘1℘11c) ∖ ({{∅}}
×k V))) ∩ Ins3k (( Ins2k ◡k(({{∅}} ×k {∅}) ∪ ( ∼ (( Ins2k Sk ⊕ Ins3k (( Ins3k ◡k Sk ∖ Ins2k (( Ins2k (( Nn ×k V) ∩ (( Ins2k SIk Sk ∩ Ins3k (( Ins3k SIk ((℘1c ×k
V) ∖ (( Ins3k Sk ⊕ Ins2k SIk Sk ) “k ℘1℘1℘11c)) ∩ Ins2k Sk ) “k ℘1℘11c))
“k ℘1℘1℘11c)) ⊕
Ins3k Ik )
“k ℘11c))
“k ℘11c))
“k ℘1℘11c) ∖ ({{∅}}
×k V))) ∩ Ins3k (( Nn ×k Nn ) ∩ (( Ins3k (( Ins3k SIk ((℘1c ×k
V) ∖ (( Ins3k Sk ⊕ Ins2k SIk Sk ) “k ℘1℘1℘11c)) ∩ Ins2k Sk ) “k ℘1℘11c) ∩ Ins2k (( Ins3k SIk ∼ (( Ins3k Sk ⊕ Ins2k SIk Sk ) “k ℘1℘11c) ∩ Ins2k Sk ) “k ℘1℘11c))
“k ℘1℘1℘11c)))
“k ℘11c))
“k ℘11c) ∈ V |
109 | 97, 108 | difex 4108 |
. . . . . 6
⊢ ( SIk (( Nn
×k Nn ) ∩ (( Ins3k (( Ins3k SIk ((℘1c ×k
V) ∖ (( Ins3k Sk ⊕ Ins2k SIk Sk ) “k ℘1℘1℘11c)) ∩ Ins2k Sk ) “k ℘1℘11c) ∩ Ins2k (( Ins3k SIk ∼ (( Ins3k Sk ⊕ Ins2k SIk Sk ) “k ℘1℘11c) ∩ Ins2k Sk ) “k ℘1℘11c))
“k ℘1℘1℘11c)) ∖ (( Ins2k ◡k(({{∅}} ×k {∅}) ∪ ( ∼ (( Ins2k Sk ⊕ Ins3k (( Ins3k ◡k Sk ∖ Ins2k (( Ins2k (( Nn ×k V) ∩ (( Ins2k SIk Sk ∩ Ins3k (( Ins3k SIk ((℘1c ×k
V) ∖ (( Ins3k Sk ⊕ Ins2k SIk Sk ) “k ℘1℘1℘11c)) ∩ Ins2k Sk ) “k ℘1℘11c))
“k ℘1℘1℘11c)) ⊕
Ins3k Ik )
“k ℘11c))
“k ℘11c))
“k ℘1℘11c) ∖ ({{∅}}
×k V))) ∩ Ins3k (( Ins2k ◡k(({{∅}} ×k {∅}) ∪ ( ∼ (( Ins2k Sk ⊕ Ins3k (( Ins3k ◡k Sk ∖ Ins2k (( Ins2k (( Nn ×k V) ∩ (( Ins2k SIk Sk ∩ Ins3k (( Ins3k SIk ((℘1c ×k
V) ∖ (( Ins3k Sk ⊕ Ins2k SIk Sk ) “k ℘1℘1℘11c)) ∩ Ins2k Sk ) “k ℘1℘11c))
“k ℘1℘1℘11c)) ⊕
Ins3k Ik )
“k ℘11c))
“k ℘11c))
“k ℘1℘11c) ∖ ({{∅}}
×k V))) ∩ Ins3k (( Nn ×k Nn ) ∩ (( Ins3k (( Ins3k SIk ((℘1c ×k
V) ∖ (( Ins3k Sk ⊕ Ins2k SIk Sk ) “k ℘1℘1℘11c)) ∩ Ins2k Sk ) “k ℘1℘11c) ∩ Ins2k (( Ins3k SIk ∼ (( Ins3k Sk ⊕ Ins2k SIk Sk ) “k ℘1℘11c) ∩ Ins2k Sk ) “k ℘1℘11c))
“k ℘1℘1℘11c)))
“k ℘11c))
“k ℘11c)) ∈ V |
110 | 109 | cnvkex 4288 |
. . . . 5
⊢ ◡k( SIk (( Nn
×k Nn ) ∩ (( Ins3k (( Ins3k SIk ((℘1c ×k
V) ∖ (( Ins3k Sk ⊕ Ins2k SIk Sk ) “k ℘1℘1℘11c)) ∩ Ins2k Sk ) “k ℘1℘11c) ∩ Ins2k (( Ins3k SIk ∼ (( Ins3k Sk ⊕ Ins2k SIk Sk ) “k ℘1℘11c) ∩ Ins2k Sk ) “k ℘1℘11c))
“k ℘1℘1℘11c)) ∖ (( Ins2k ◡k(({{∅}} ×k {∅}) ∪ ( ∼ (( Ins2k Sk ⊕ Ins3k (( Ins3k ◡k Sk ∖ Ins2k (( Ins2k (( Nn ×k V) ∩ (( Ins2k SIk Sk ∩ Ins3k (( Ins3k SIk ((℘1c ×k
V) ∖ (( Ins3k Sk ⊕ Ins2k SIk Sk ) “k ℘1℘1℘11c)) ∩ Ins2k Sk ) “k ℘1℘11c))
“k ℘1℘1℘11c)) ⊕
Ins3k Ik )
“k ℘11c))
“k ℘11c))
“k ℘1℘11c) ∖ ({{∅}}
×k V))) ∩ Ins3k (( Ins2k ◡k(({{∅}} ×k {∅}) ∪ ( ∼ (( Ins2k Sk ⊕ Ins3k (( Ins3k ◡k Sk ∖ Ins2k (( Ins2k (( Nn ×k V) ∩ (( Ins2k SIk Sk ∩ Ins3k (( Ins3k SIk ((℘1c ×k
V) ∖ (( Ins3k Sk ⊕ Ins2k SIk Sk ) “k ℘1℘1℘11c)) ∩ Ins2k Sk ) “k ℘1℘11c))
“k ℘1℘1℘11c)) ⊕
Ins3k Ik )
“k ℘11c))
“k ℘11c))
“k ℘1℘11c) ∖ ({{∅}}
×k V))) ∩ Ins3k (( Nn ×k Nn ) ∩ (( Ins3k (( Ins3k SIk ((℘1c ×k
V) ∖ (( Ins3k Sk ⊕ Ins2k SIk Sk ) “k ℘1℘1℘11c)) ∩ Ins2k Sk ) “k ℘1℘11c) ∩ Ins2k (( Ins3k SIk ∼ (( Ins3k Sk ⊕ Ins2k SIk Sk ) “k ℘1℘11c) ∩ Ins2k Sk ) “k ℘1℘11c))
“k ℘1℘1℘11c)))
“k ℘11c))
“k ℘11c)) ∈ V |
111 | 110, 103 | imakex 4301 |
. . . 4
⊢ (◡k( SIk (( Nn
×k Nn ) ∩ (( Ins3k (( Ins3k SIk ((℘1c ×k
V) ∖ (( Ins3k Sk ⊕ Ins2k SIk Sk ) “k ℘1℘1℘11c)) ∩ Ins2k Sk ) “k ℘1℘11c) ∩ Ins2k (( Ins3k SIk ∼ (( Ins3k Sk ⊕ Ins2k SIk Sk ) “k ℘1℘11c) ∩ Ins2k Sk ) “k ℘1℘11c))
“k ℘1℘1℘11c)) ∖ (( Ins2k ◡k(({{∅}} ×k {∅}) ∪ ( ∼ (( Ins2k Sk ⊕ Ins3k (( Ins3k ◡k Sk ∖ Ins2k (( Ins2k (( Nn ×k V) ∩ (( Ins2k SIk Sk ∩ Ins3k (( Ins3k SIk ((℘1c ×k
V) ∖ (( Ins3k Sk ⊕ Ins2k SIk Sk ) “k ℘1℘1℘11c)) ∩ Ins2k Sk ) “k ℘1℘11c))
“k ℘1℘1℘11c)) ⊕
Ins3k Ik )
“k ℘11c))
“k ℘11c))
“k ℘1℘11c) ∖ ({{∅}}
×k V))) ∩ Ins3k (( Ins2k ◡k(({{∅}} ×k {∅}) ∪ ( ∼ (( Ins2k Sk ⊕ Ins3k (( Ins3k ◡k Sk ∖ Ins2k (( Ins2k (( Nn ×k V) ∩ (( Ins2k SIk Sk ∩ Ins3k (( Ins3k SIk ((℘1c ×k
V) ∖ (( Ins3k Sk ⊕ Ins2k SIk Sk ) “k ℘1℘1℘11c)) ∩ Ins2k Sk ) “k ℘1℘11c))
“k ℘1℘1℘11c)) ⊕
Ins3k Ik )
“k ℘11c))
“k ℘11c))
“k ℘1℘11c) ∖ ({{∅}}
×k V))) ∩ Ins3k (( Nn ×k Nn ) ∩ (( Ins3k (( Ins3k SIk ((℘1c ×k
V) ∖ (( Ins3k Sk ⊕ Ins2k SIk Sk ) “k ℘1℘1℘11c)) ∩ Ins2k Sk ) “k ℘1℘11c) ∩ Ins2k (( Ins3k SIk ∼ (( Ins3k Sk ⊕ Ins2k SIk Sk ) “k ℘1℘11c) ∩ Ins2k Sk ) “k ℘1℘11c))
“k ℘1℘1℘11c)))
“k ℘11c))
“k ℘11c))
“k 1c) ∈ V |
112 | 111 | complex 4105 |
. . 3
⊢ ∼ (◡k( SIk (( Nn
×k Nn ) ∩ (( Ins3k (( Ins3k SIk ((℘1c ×k
V) ∖ (( Ins3k Sk ⊕ Ins2k SIk Sk ) “k ℘1℘1℘11c)) ∩ Ins2k Sk ) “k ℘1℘11c) ∩ Ins2k (( Ins3k SIk ∼ (( Ins3k Sk ⊕ Ins2k SIk Sk ) “k ℘1℘11c) ∩ Ins2k Sk ) “k ℘1℘11c))
“k ℘1℘1℘11c)) ∖ (( Ins2k ◡k(({{∅}} ×k {∅}) ∪ ( ∼ (( Ins2k Sk ⊕ Ins3k (( Ins3k ◡k Sk ∖ Ins2k (( Ins2k (( Nn ×k V) ∩ (( Ins2k SIk Sk ∩ Ins3k (( Ins3k SIk ((℘1c ×k
V) ∖ (( Ins3k Sk ⊕ Ins2k SIk Sk ) “k ℘1℘1℘11c)) ∩ Ins2k Sk ) “k ℘1℘11c))
“k ℘1℘1℘11c)) ⊕
Ins3k Ik )
“k ℘11c))
“k ℘11c))
“k ℘1℘11c) ∖ ({{∅}}
×k V))) ∩ Ins3k (( Ins2k ◡k(({{∅}} ×k {∅}) ∪ ( ∼ (( Ins2k Sk ⊕ Ins3k (( Ins3k ◡k Sk ∖ Ins2k (( Ins2k (( Nn ×k V) ∩ (( Ins2k SIk Sk ∩ Ins3k (( Ins3k SIk ((℘1c ×k
V) ∖ (( Ins3k Sk ⊕ Ins2k SIk Sk ) “k ℘1℘1℘11c)) ∩ Ins2k Sk ) “k ℘1℘11c))
“k ℘1℘1℘11c)) ⊕
Ins3k Ik )
“k ℘11c))
“k ℘11c))
“k ℘1℘11c) ∖ ({{∅}}
×k V))) ∩ Ins3k (( Nn ×k Nn ) ∩ (( Ins3k (( Ins3k SIk ((℘1c ×k
V) ∖ (( Ins3k Sk ⊕ Ins2k SIk Sk ) “k ℘1℘1℘11c)) ∩ Ins2k Sk ) “k ℘1℘11c) ∩ Ins2k (( Ins3k SIk ∼ (( Ins3k Sk ⊕ Ins2k SIk Sk ) “k ℘1℘11c) ∩ Ins2k Sk ) “k ℘1℘11c))
“k ℘1℘1℘11c)))
“k ℘11c))
“k ℘11c))
“k 1c) ∈ V |
113 | 112 | uni1ex 4294 |
. 2
⊢ ⋃1
∼ (◡k( SIk (( Nn
×k Nn ) ∩ (( Ins3k (( Ins3k SIk ((℘1c ×k
V) ∖ (( Ins3k Sk ⊕ Ins2k SIk Sk ) “k ℘1℘1℘11c)) ∩ Ins2k Sk ) “k ℘1℘11c) ∩ Ins2k (( Ins3k SIk ∼ (( Ins3k Sk ⊕ Ins2k SIk Sk ) “k ℘1℘11c) ∩ Ins2k Sk ) “k ℘1℘11c))
“k ℘1℘1℘11c)) ∖ (( Ins2k ◡k(({{∅}} ×k {∅}) ∪ ( ∼ (( Ins2k Sk ⊕ Ins3k (( Ins3k ◡k Sk ∖ Ins2k (( Ins2k (( Nn ×k V) ∩ (( Ins2k SIk Sk ∩ Ins3k (( Ins3k SIk ((℘1c ×k
V) ∖ (( Ins3k Sk ⊕ Ins2k SIk Sk ) “k ℘1℘1℘11c)) ∩ Ins2k Sk ) “k ℘1℘11c))
“k ℘1℘1℘11c)) ⊕
Ins3k Ik )
“k ℘11c))
“k ℘11c))
“k ℘1℘11c) ∖ ({{∅}}
×k V))) ∩ Ins3k (( Ins2k ◡k(({{∅}} ×k {∅}) ∪ ( ∼ (( Ins2k Sk ⊕ Ins3k (( Ins3k ◡k Sk ∖ Ins2k (( Ins2k (( Nn ×k V) ∩ (( Ins2k SIk Sk ∩ Ins3k (( Ins3k SIk ((℘1c ×k
V) ∖ (( Ins3k Sk ⊕ Ins2k SIk Sk ) “k ℘1℘1℘11c)) ∩ Ins2k Sk ) “k ℘1℘11c))
“k ℘1℘1℘11c)) ⊕
Ins3k Ik )
“k ℘11c))
“k ℘11c))
“k ℘1℘11c) ∖ ({{∅}}
×k V))) ∩ Ins3k (( Nn ×k Nn ) ∩ (( Ins3k (( Ins3k SIk ((℘1c ×k
V) ∖ (( Ins3k Sk ⊕ Ins2k SIk Sk ) “k ℘1℘1℘11c)) ∩ Ins2k Sk ) “k ℘1℘11c) ∩ Ins2k (( Ins3k SIk ∼ (( Ins3k Sk ⊕ Ins2k SIk Sk ) “k ℘1℘11c) ∩ Ins2k Sk ) “k ℘1℘11c))
“k ℘1℘1℘11c)))
“k ℘11c))
“k ℘11c))
“k 1c) ∈ V |
114 | 95, 113 | eqeltrri 2424 |
1
⊢ {m ∣ ∀n( Sfin (m,
n) → Sfin ( Tfin m,
Tfin n))} ∈
V |