Step | Hyp | Ref
| Expression |
1 | | nchoicelem10.2 |
. 2
⊢ X ∈
V |
2 | | elrn 4897 |
. . . . 5
⊢ (〈{y}, X〉 ∈ ran (◡
∼ S ⊗ (◡ S ↾ Fix ( S ∘ ImageS))) ↔ ∃z z(◡ ∼
S ⊗ (◡ S ↾ Fix ( S ∘ ImageS)))〈{y}, X〉) |
3 | | trtxp 5782 |
. . . . . . 7
⊢ (z(◡ ∼
S ⊗ (◡ S ↾ Fix ( S ∘ ImageS)))〈{y}, X〉 ↔ (z◡ ∼
S {y} ∧ z(◡ S ↾ Fix ( S ∘ ImageS))X)) |
4 | | brcnv 4893 |
. . . . . . . . . 10
⊢ (z◡ ∼
S {y} ↔
{y} ∼ S
z) |
5 | | df-br 4641 |
. . . . . . . . . 10
⊢ ({y} ∼ S z ↔ 〈{y}, z〉 ∈ ∼ S
) |
6 | | snex 4112 |
. . . . . . . . . . . . 13
⊢ {y} ∈
V |
7 | | vex 2863 |
. . . . . . . . . . . . 13
⊢ z ∈
V |
8 | 6, 7 | opex 4589 |
. . . . . . . . . . . 12
⊢ 〈{y}, z〉 ∈ V |
9 | 8 | elcompl 3226 |
. . . . . . . . . . 11
⊢ (〈{y}, z〉 ∈ ∼ S ↔
¬ 〈{y}, z〉 ∈ S ) |
10 | | vex 2863 |
. . . . . . . . . . . 12
⊢ y ∈
V |
11 | 10, 7 | opelssetsn 4761 |
. . . . . . . . . . 11
⊢ (〈{y}, z〉 ∈ S ↔ y ∈ z) |
12 | 9, 11 | xchbinx 301 |
. . . . . . . . . 10
⊢ (〈{y}, z〉 ∈ ∼ S ↔
¬ y ∈
z) |
13 | 4, 5, 12 | 3bitri 262 |
. . . . . . . . 9
⊢ (z◡ ∼
S {y} ↔
¬ y ∈
z) |
14 | | brres 4950 |
. . . . . . . . . 10
⊢ (z(◡ S ↾ Fix ( S ∘ ImageS))X ↔
(z◡ S X ∧ z ∈ Fix ( S ∘ ImageS))) |
15 | | brcnv 4893 |
. . . . . . . . . . . 12
⊢ (z◡ S X ↔ X S z) |
16 | 1, 7 | brsset 4759 |
. . . . . . . . . . . 12
⊢ (X S z ↔ X ⊆ z) |
17 | 15, 16 | bitri 240 |
. . . . . . . . . . 11
⊢ (z◡ S X ↔ X ⊆ z) |
18 | | elfix 5788 |
. . . . . . . . . . . 12
⊢ (z ∈ Fix ( S ∘ ImageS)
↔ z( S
∘ ImageS)z) |
19 | | brco 4884 |
. . . . . . . . . . . . 13
⊢ (z( S ∘ ImageS)z ↔ ∃t(zImageSt ∧ t S z)) |
20 | | vex 2863 |
. . . . . . . . . . . . . . . 16
⊢ t ∈
V |
21 | 7, 20 | brimage 5794 |
. . . . . . . . . . . . . . 15
⊢ (zImageSt ↔ t =
(S “ z)) |
22 | 20, 7 | brsset 4759 |
. . . . . . . . . . . . . . 15
⊢ (t S z ↔ t ⊆ z) |
23 | 21, 22 | anbi12i 678 |
. . . . . . . . . . . . . 14
⊢ ((zImageSt ∧ t S z) ↔ (t =
(S “ z) ∧ t ⊆ z)) |
24 | 23 | exbii 1582 |
. . . . . . . . . . . . 13
⊢ (∃t(zImageSt ∧ t S z) ↔ ∃t(t = (S “
z) ∧
t ⊆
z)) |
25 | | nchoicelem10.1 |
. . . . . . . . . . . . . . 15
⊢ S ∈
V |
26 | 25, 7 | imaex 4748 |
. . . . . . . . . . . . . 14
⊢ (S “ z)
∈ V |
27 | | sseq1 3293 |
. . . . . . . . . . . . . 14
⊢ (t = (S “
z) → (t ⊆ z ↔ (S
“ z) ⊆ z)) |
28 | 26, 27 | ceqsexv 2895 |
. . . . . . . . . . . . 13
⊢ (∃t(t = (S “
z) ∧
t ⊆
z) ↔ (S “ z)
⊆ z) |
29 | 19, 24, 28 | 3bitri 262 |
. . . . . . . . . . . 12
⊢ (z( S ∘ ImageS)z ↔
(S “ z) ⊆ z) |
30 | 18, 29 | bitri 240 |
. . . . . . . . . . 11
⊢ (z ∈ Fix ( S ∘ ImageS)
↔ (S “ z) ⊆ z) |
31 | 17, 30 | anbi12i 678 |
. . . . . . . . . 10
⊢ ((z◡ S X ∧ z ∈ Fix ( S ∘ ImageS)) ↔ (X
⊆ z
∧ (S
“ z) ⊆ z)) |
32 | 14, 31 | bitri 240 |
. . . . . . . . 9
⊢ (z(◡ S ↾ Fix ( S ∘ ImageS))X ↔
(X ⊆
z ∧
(S “ z) ⊆ z)) |
33 | 13, 32 | anbi12i 678 |
. . . . . . . 8
⊢ ((z◡ ∼
S {y} ∧ z(◡ S ↾ Fix ( S ∘ ImageS))X) ↔
(¬ y ∈ z ∧ (X ⊆ z ∧ (S “
z) ⊆
z))) |
34 | | ancom 437 |
. . . . . . . 8
⊢ ((¬ y ∈ z ∧ (X ⊆ z ∧ (S “ z)
⊆ z))
↔ ((X ⊆ z ∧ (S “
z) ⊆
z) ∧ ¬
y ∈
z)) |
35 | 33, 34 | bitri 240 |
. . . . . . 7
⊢ ((z◡ ∼
S {y} ∧ z(◡ S ↾ Fix ( S ∘ ImageS))X) ↔
((X ⊆
z ∧
(S “ z) ⊆ z) ∧ ¬ y ∈ z)) |
36 | | annim 414 |
. . . . . . 7
⊢ (((X ⊆ z ∧ (S “ z)
⊆ z)
∧ ¬ y
∈ z)
↔ ¬ ((X ⊆ z ∧ (S “
z) ⊆
z) → y ∈ z)) |
37 | 3, 35, 36 | 3bitri 262 |
. . . . . 6
⊢ (z(◡ ∼
S ⊗ (◡ S ↾ Fix ( S ∘ ImageS)))〈{y}, X〉 ↔ ¬ ((X ⊆ z ∧ (S “ z)
⊆ z)
→ y ∈ z)) |
38 | 37 | exbii 1582 |
. . . . 5
⊢ (∃z z(◡ ∼
S ⊗ (◡ S ↾ Fix ( S ∘ ImageS)))〈{y}, X〉 ↔ ∃z ¬
((X ⊆
z ∧
(S “ z) ⊆ z) → y
∈ z)) |
39 | | exnal 1574 |
. . . . 5
⊢ (∃z ¬
((X ⊆
z ∧
(S “ z) ⊆ z) → y
∈ z)
↔ ¬ ∀z((X ⊆ z ∧ (S “
z) ⊆
z) → y ∈ z)) |
40 | 2, 38, 39 | 3bitrri 263 |
. . . 4
⊢ (¬ ∀z((X ⊆ z ∧ (S “ z)
⊆ z)
→ y ∈ z) ↔
〈{y},
X〉 ∈ ran (◡
∼ S ⊗ (◡ S ↾ Fix ( S ∘ ImageS)))) |
41 | 40 | con1bii 321 |
. . 3
⊢ (¬ 〈{y}, X〉 ∈ ran (◡
∼ S ⊗ (◡ S ↾ Fix ( S ∘ ImageS))) ↔ ∀z((X ⊆ z ∧ (S “ z)
⊆ z)
→ y ∈ z)) |
42 | 6, 1 | opex 4589 |
. . . 4
⊢ 〈{y}, X〉 ∈ V |
43 | 42 | elcompl 3226 |
. . 3
⊢ (〈{y}, X〉 ∈ ∼ ran (◡ ∼ S
⊗ (◡ S
↾ Fix
( S ∘
ImageS))) ↔ ¬ 〈{y}, X〉 ∈ ran (◡
∼ S ⊗ (◡ S ↾ Fix ( S ∘ ImageS)))) |
44 | | df-clos1 5874 |
. . . . 5
⊢ Clos1 (X, S) = ∩{z ∣ (X ⊆ z ∧ (S “ z)
⊆ z)} |
45 | 44 | eleq2i 2417 |
. . . 4
⊢ (y ∈ Clos1 (X, S) ↔ y
∈ ∩{z ∣ (X ⊆ z ∧ (S “ z)
⊆ z)}) |
46 | 10 | elintab 3938 |
. . . 4
⊢ (y ∈ ∩{z ∣ (X ⊆ z ∧ (S “
z) ⊆
z)} ↔ ∀z((X ⊆ z ∧ (S “ z)
⊆ z)
→ y ∈ z)) |
47 | 45, 46 | bitri 240 |
. . 3
⊢ (y ∈ Clos1 (X, S) ↔ ∀z((X ⊆ z ∧ (S “ z)
⊆ z)
→ y ∈ z)) |
48 | 41, 43, 47 | 3bitr4i 268 |
. 2
⊢ (〈{y}, X〉 ∈ ∼ ran (◡ ∼ S
⊗ (◡ S
↾ Fix
( S ∘
ImageS))) ↔ y ∈ Clos1 (X, S)) |
49 | 1, 48 | releqel 5808 |
1
⊢ (〈c, X〉 ∈ ∼ (( Ins3 S ⊕ Ins2 ∼ ran
(◡ ∼ S
⊗ (◡ S ↾ Fix ( S ∘ ImageS))))
“ 1c) ↔ c =
Clos1 (X,
S)) |