New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > br1stg | GIF version |
Description: The binary relationship over the 1st function. (Contributed by SF, 5-Jan-2015.) |
Ref | Expression |
---|---|
br1stg | ⊢ ((A ∈ V ∧ B ∈ W) → (〈A, B〉1st C ↔ A = C)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | opeq1 4578 | . . . 4 ⊢ (z = A → 〈z, w〉 = 〈A, w〉) | |
2 | 1 | breq1d 4649 | . . 3 ⊢ (z = A → (〈z, w〉1st C ↔ 〈A, w〉1st C)) |
3 | eqeq1 2359 | . . 3 ⊢ (z = A → (z = C ↔ A = C)) | |
4 | 2, 3 | bibi12d 312 | . 2 ⊢ (z = A → ((〈z, w〉1st C ↔ z = C) ↔ (〈A, w〉1st C ↔ A = C))) |
5 | opeq2 4579 | . . . 4 ⊢ (w = B → 〈A, w〉 = 〈A, B〉) | |
6 | 5 | breq1d 4649 | . . 3 ⊢ (w = B → (〈A, w〉1st C ↔ 〈A, B〉1st C)) |
7 | 6 | bibi1d 310 | . 2 ⊢ (w = B → ((〈A, w〉1st C ↔ A = C) ↔ (〈A, B〉1st C ↔ A = C))) |
8 | df-br 4640 | . . 3 ⊢ (〈z, w〉1st C ↔ 〈〈z, w〉, C〉 ∈ 1st ) | |
9 | el1st 4729 | . . 3 ⊢ (〈〈z, w〉, C〉 ∈ 1st ↔ ∃x∃y〈〈z, w〉, C〉 = 〈〈x, y〉, x〉) | |
10 | eqcom 2355 | . . . . . 6 ⊢ (〈〈z, w〉, C〉 = 〈〈x, y〉, x〉 ↔ 〈〈x, y〉, x〉 = 〈〈z, w〉, C〉) | |
11 | opth 4602 | . . . . . . 7 ⊢ (〈〈x, y〉, x〉 = 〈〈z, w〉, C〉 ↔ (〈x, y〉 = 〈z, w〉 ∧ x = C)) | |
12 | opth 4602 | . . . . . . . . 9 ⊢ (〈x, y〉 = 〈z, w〉 ↔ (x = z ∧ y = w)) | |
13 | 12 | anbi1i 676 | . . . . . . . 8 ⊢ ((〈x, y〉 = 〈z, w〉 ∧ x = C) ↔ ((x = z ∧ y = w) ∧ x = C)) |
14 | df-3an 936 | . . . . . . . 8 ⊢ ((x = z ∧ y = w ∧ x = C) ↔ ((x = z ∧ y = w) ∧ x = C)) | |
15 | 13, 14 | bitr4i 243 | . . . . . . 7 ⊢ ((〈x, y〉 = 〈z, w〉 ∧ x = C) ↔ (x = z ∧ y = w ∧ x = C)) |
16 | 11, 15 | bitri 240 | . . . . . 6 ⊢ (〈〈x, y〉, x〉 = 〈〈z, w〉, C〉 ↔ (x = z ∧ y = w ∧ x = C)) |
17 | 10, 16 | bitri 240 | . . . . 5 ⊢ (〈〈z, w〉, C〉 = 〈〈x, y〉, x〉 ↔ (x = z ∧ y = w ∧ x = C)) |
18 | 17 | 2exbii 1583 | . . . 4 ⊢ (∃x∃y〈〈z, w〉, C〉 = 〈〈x, y〉, x〉 ↔ ∃x∃y(x = z ∧ y = w ∧ x = C)) |
19 | vex 2862 | . . . . 5 ⊢ z ∈ V | |
20 | vex 2862 | . . . . 5 ⊢ w ∈ V | |
21 | eqeq1 2359 | . . . . 5 ⊢ (x = z → (x = C ↔ z = C)) | |
22 | biidd 228 | . . . . 5 ⊢ (y = w → (z = C ↔ z = C)) | |
23 | 19, 20, 21, 22 | ceqsex2v 2896 | . . . 4 ⊢ (∃x∃y(x = z ∧ y = w ∧ x = C) ↔ z = C) |
24 | 18, 23 | bitri 240 | . . 3 ⊢ (∃x∃y〈〈z, w〉, C〉 = 〈〈x, y〉, x〉 ↔ z = C) |
25 | 8, 9, 24 | 3bitri 262 | . 2 ⊢ (〈z, w〉1st C ↔ z = C) |
26 | 4, 7, 25 | vtocl2g 2918 | 1 ⊢ ((A ∈ V ∧ B ∈ W) → (〈A, B〉1st C ↔ A = C)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 176 ∧ wa 358 ∧ w3a 934 ∃wex 1541 = wceq 1642 ∈ wcel 1710 〈cop 4561 class class class wbr 4639 1st c1st 4717 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-13 1712 ax-14 1714 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 ax-ext 2334 ax-nin 4078 ax-xp 4079 ax-cnv 4080 ax-1c 4081 ax-sset 4082 ax-si 4083 ax-ins2 4084 ax-ins3 4085 ax-typlower 4086 ax-sn 4087 |
This theorem depends on definitions: df-bi 177 df-or 359 df-an 360 df-3or 935 df-3an 936 df-nan 1288 df-tru 1319 df-ex 1542 df-nf 1545 df-sb 1649 df-eu 2208 df-mo 2209 df-clab 2340 df-cleq 2346 df-clel 2349 df-nfc 2478 df-ne 2518 df-ral 2619 df-rex 2620 df-reu 2621 df-rmo 2622 df-rab 2623 df-v 2861 df-sbc 3047 df-nin 3211 df-compl 3212 df-in 3213 df-un 3214 df-dif 3215 df-symdif 3216 df-ss 3259 df-pss 3261 df-nul 3551 df-if 3663 df-pw 3724 df-sn 3741 df-pr 3742 df-uni 3892 df-int 3927 df-opk 4058 df-1c 4136 df-pw1 4137 df-uni1 4138 df-xpk 4185 df-cnvk 4186 df-ins2k 4187 df-ins3k 4188 df-imak 4189 df-cok 4190 df-p6 4191 df-sik 4192 df-ssetk 4193 df-imagek 4194 df-idk 4195 df-iota 4339 df-0c 4377 df-addc 4378 df-nnc 4379 df-fin 4380 df-lefin 4440 df-ltfin 4441 df-ncfin 4442 df-tfin 4443 df-evenfin 4444 df-oddfin 4445 df-sfin 4446 df-spfin 4447 df-phi 4565 df-op 4566 df-proj1 4567 df-proj2 4568 df-opab 4623 df-br 4640 df-1st 4723 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |