| New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > NFE Home > Th. List > clos1eq1 | GIF version | ||
| Description: Equality law for closure. (Contributed by SF, 11-Feb-2015.) |
| Ref | Expression |
|---|---|
| clos1eq1 | ⊢ (S = T → Clos1 (S, R) = Clos1 (T, R)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sseq1 3293 | . . . . 5 ⊢ (S = T → (S ⊆ a ↔ T ⊆ a)) | |
| 2 | 1 | anbi1d 685 | . . . 4 ⊢ (S = T → ((S ⊆ a ∧ (R “ a) ⊆ a) ↔ (T ⊆ a ∧ (R “ a) ⊆ a))) |
| 3 | 2 | abbidv 2468 | . . 3 ⊢ (S = T → {a ∣ (S ⊆ a ∧ (R “ a) ⊆ a)} = {a ∣ (T ⊆ a ∧ (R “ a) ⊆ a)}) |
| 4 | inteq 3930 | . . 3 ⊢ ({a ∣ (S ⊆ a ∧ (R “ a) ⊆ a)} = {a ∣ (T ⊆ a ∧ (R “ a) ⊆ a)} → ∩{a ∣ (S ⊆ a ∧ (R “ a) ⊆ a)} = ∩{a ∣ (T ⊆ a ∧ (R “ a) ⊆ a)}) | |
| 5 | 3, 4 | syl 15 | . 2 ⊢ (S = T → ∩{a ∣ (S ⊆ a ∧ (R “ a) ⊆ a)} = ∩{a ∣ (T ⊆ a ∧ (R “ a) ⊆ a)}) |
| 6 | df-clos1 5874 | . 2 ⊢ Clos1 (S, R) = ∩{a ∣ (S ⊆ a ∧ (R “ a) ⊆ a)} | |
| 7 | df-clos1 5874 | . 2 ⊢ Clos1 (T, R) = ∩{a ∣ (T ⊆ a ∧ (R “ a) ⊆ a)} | |
| 8 | 5, 6, 7 | 3eqtr4g 2410 | 1 ⊢ (S = T → Clos1 (S, R) = Clos1 (T, R)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 358 = wceq 1642 {cab 2339 ⊆ wss 3258 ∩cint 3927 “ cima 4723 Clos1 cclos1 5873 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 ax-ext 2334 |
| This theorem depends on definitions: df-bi 177 df-or 359 df-an 360 df-nan 1288 df-tru 1319 df-ex 1542 df-nf 1545 df-sb 1649 df-clab 2340 df-cleq 2346 df-clel 2349 df-nfc 2479 df-ral 2620 df-v 2862 df-nin 3212 df-compl 3213 df-in 3214 df-ss 3260 df-int 3928 df-clos1 5874 |
| This theorem is referenced by: clos1exg 5878 clos1basesucg 5885 spacval 6283 nchoicelem11 6300 nchoicelem16 6305 freceq12 6312 frecxp 6315 |
| Copyright terms: Public domain | W3C validator |