New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > dfeu2 | GIF version |
Description: Alternate definition of existential uniqueness in terms of abstraction. (Contributed by SF, 29-Jan-2015.) |
Ref | Expression |
---|---|
dfeu2 | ⊢ (∃!xφ ↔ {x ∣ φ} ∈ 1c) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | abbi 2464 | . . . 4 ⊢ (∀x(φ ↔ x = y) ↔ {x ∣ φ} = {x ∣ x = y}) | |
2 | df-sn 3742 | . . . . 5 ⊢ {y} = {x ∣ x = y} | |
3 | 2 | eqeq2i 2363 | . . . 4 ⊢ ({x ∣ φ} = {y} ↔ {x ∣ φ} = {x ∣ x = y}) |
4 | 1, 3 | bitr4i 243 | . . 3 ⊢ (∀x(φ ↔ x = y) ↔ {x ∣ φ} = {y}) |
5 | 4 | exbii 1582 | . 2 ⊢ (∃y∀x(φ ↔ x = y) ↔ ∃y{x ∣ φ} = {y}) |
6 | df-eu 2208 | . 2 ⊢ (∃!xφ ↔ ∃y∀x(φ ↔ x = y)) | |
7 | el1c 4140 | . 2 ⊢ ({x ∣ φ} ∈ 1c ↔ ∃y{x ∣ φ} = {y}) | |
8 | 5, 6, 7 | 3bitr4i 268 | 1 ⊢ (∃!xφ ↔ {x ∣ φ} ∈ 1c) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 176 ∀wal 1540 ∃wex 1541 = wceq 1642 ∈ wcel 1710 ∃!weu 2204 {cab 2339 {csn 3738 1cc1c 4135 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 ax-ext 2334 ax-nin 4079 ax-sn 4088 |
This theorem depends on definitions: df-bi 177 df-or 359 df-an 360 df-nan 1288 df-tru 1319 df-ex 1542 df-nf 1545 df-sb 1649 df-eu 2208 df-clab 2340 df-cleq 2346 df-clel 2349 df-nfc 2479 df-ne 2519 df-v 2862 df-nin 3212 df-compl 3213 df-in 3214 df-un 3215 df-dif 3216 df-ss 3260 df-nul 3552 df-sn 3742 df-1c 4137 |
This theorem is referenced by: euabex 4335 dfiota4 4373 |
Copyright terms: Public domain | W3C validator |