New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > el1c | GIF version |
Description: Membership in cardinal one. (Contributed by SF, 12-Jan-2015.) |
Ref | Expression |
---|---|
el1c | ⊢ (A ∈ 1c ↔ ∃x A = {x}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elex 2868 | . 2 ⊢ (A ∈ 1c → A ∈ V) | |
2 | snex 4112 | . . . 4 ⊢ {x} ∈ V | |
3 | eleq1 2413 | . . . 4 ⊢ (A = {x} → (A ∈ V ↔ {x} ∈ V)) | |
4 | 2, 3 | mpbiri 224 | . . 3 ⊢ (A = {x} → A ∈ V) |
5 | 4 | exlimiv 1634 | . 2 ⊢ (∃x A = {x} → A ∈ V) |
6 | eqeq1 2359 | . . . 4 ⊢ (y = A → (y = {x} ↔ A = {x})) | |
7 | 6 | exbidv 1626 | . . 3 ⊢ (y = A → (∃x y = {x} ↔ ∃x A = {x})) |
8 | df-1c 4137 | . . 3 ⊢ 1c = {y ∣ ∃x y = {x}} | |
9 | 7, 8 | elab2g 2988 | . 2 ⊢ (A ∈ V → (A ∈ 1c ↔ ∃x A = {x})) |
10 | 1, 5, 9 | pm5.21nii 342 | 1 ⊢ (A ∈ 1c ↔ ∃x A = {x}) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 176 ∃wex 1541 = wceq 1642 ∈ wcel 1710 Vcvv 2860 {csn 3738 1cc1c 4135 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 ax-ext 2334 ax-nin 4079 ax-sn 4088 |
This theorem depends on definitions: df-bi 177 df-or 359 df-an 360 df-nan 1288 df-tru 1319 df-ex 1542 df-nf 1545 df-sb 1649 df-clab 2340 df-cleq 2346 df-clel 2349 df-nfc 2479 df-ne 2519 df-v 2862 df-nin 3212 df-compl 3213 df-in 3214 df-un 3215 df-dif 3216 df-ss 3260 df-nul 3552 df-sn 3742 df-1c 4137 |
This theorem is referenced by: snel1c 4141 elpw1 4145 elpw11c 4148 0nel1c 4160 eqpw1 4163 df1c2 4169 pw111 4171 eluni1g 4173 opkelimagekg 4272 sikexlem 4296 dfimak2 4299 dfpw2 4328 eqpw1uni 4331 pw1eqadj 4333 dfeu2 4334 dfnnc2 4396 0nelsuc 4401 elsuc 4414 nnsucelrlem1 4425 nnsucelr 4429 ssfin 4471 nnadjoinlem1 4520 sfintfinlem1 4532 spfinex 4538 elimapw11c 4949 pw1fnf1o 5856 1cnc 6140 el2c 6192 |
Copyright terms: Public domain | W3C validator |