NFE Home New Foundations Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  NFE Home  >  Th. List  >  elab2 GIF version

Theorem elab2 2989
Description: Membership in a class abstraction, using implicit substitution. (Contributed by NM, 13-Sep-1995.)
Hypotheses
Ref Expression
elab2.1 A V
elab2.2 (x = A → (φψ))
elab2.3 B = {x φ}
Assertion
Ref Expression
elab2 (A Bψ)
Distinct variable groups:   ψ,x   x,A
Allowed substitution hints:   φ(x)   B(x)

Proof of Theorem elab2
StepHypRef Expression
1 elab2.1 . 2 A V
2 elab2.2 . . 3 (x = A → (φψ))
3 elab2.3 . . 3 B = {x φ}
42, 3elab2g 2988 . 2 (A V → (A Bψ))
51, 4ax-mp 5 1 (A Bψ)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 176   = wceq 1642   wcel 1710  {cab 2339  Vcvv 2860
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1546  ax-5 1557  ax-17 1616  ax-9 1654  ax-8 1675  ax-6 1729  ax-7 1734  ax-11 1746  ax-12 1925  ax-ext 2334
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-tru 1319  df-ex 1542  df-nf 1545  df-sb 1649  df-clab 2340  df-cleq 2346  df-clel 2349  df-nfc 2479  df-v 2862
This theorem is referenced by:  elpw  3729  elint  3933  opkelopkabg  4246  0ceven  4506  eventfin  4518  oddtfin  4519  dfphi2  4570  phi11lem1  4596  0cnelphi  4598  proj1op  4601  proj2op  4602  opabid  4696  oprabid  5551  elfuns  5830
  Copyright terms: Public domain W3C validator