New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > spacis | GIF version |
Description: Induction scheme for the special set generator. (Contributed by SF, 13-Mar-2015.) |
Ref | Expression |
---|---|
spacis.1 | ⊢ {x ∣ φ} ∈ V |
spacis.2 | ⊢ (x = M → (φ ↔ ψ)) |
spacis.3 | ⊢ (x = y → (φ ↔ χ)) |
spacis.4 | ⊢ (x = (2c ↑c y) → (φ ↔ θ)) |
spacis.5 | ⊢ (x = N → (φ ↔ τ)) |
spacis.6 | ⊢ (M ∈ NC → ψ) |
spacis.7 | ⊢ (((M ∈ NC ∧ y ∈ ( Spac ‘M)) ∧ ((y ↑c 0c) ∈ NC ∧ χ)) → θ) |
Ref | Expression |
---|---|
spacis | ⊢ ((M ∈ NC ∧ N ∈ ( Spac ‘M)) → τ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | id 19 | . . . 4 ⊢ (M ∈ NC → M ∈ NC ) | |
2 | spacis.1 | . . . . 5 ⊢ {x ∣ φ} ∈ V | |
3 | 2 | a1i 10 | . . . 4 ⊢ (M ∈ NC → {x ∣ φ} ∈ V) |
4 | spacis.6 | . . . . 5 ⊢ (M ∈ NC → ψ) | |
5 | spacis.2 | . . . . . 6 ⊢ (x = M → (φ ↔ ψ)) | |
6 | 5 | elabg 2987 | . . . . 5 ⊢ (M ∈ NC → (M ∈ {x ∣ φ} ↔ ψ)) |
7 | 4, 6 | mpbird 223 | . . . 4 ⊢ (M ∈ NC → M ∈ {x ∣ φ}) |
8 | ancom 437 | . . . . . . 7 ⊢ ((y ∈ {x ∣ φ} ∧ (y ↑c 0c) ∈ NC ) ↔ ((y ↑c 0c) ∈ NC ∧ y ∈ {x ∣ φ})) | |
9 | vex 2863 | . . . . . . . . 9 ⊢ y ∈ V | |
10 | spacis.3 | . . . . . . . . 9 ⊢ (x = y → (φ ↔ χ)) | |
11 | 9, 10 | elab 2986 | . . . . . . . 8 ⊢ (y ∈ {x ∣ φ} ↔ χ) |
12 | 11 | anbi2i 675 | . . . . . . 7 ⊢ (((y ↑c 0c) ∈ NC ∧ y ∈ {x ∣ φ}) ↔ ((y ↑c 0c) ∈ NC ∧ χ)) |
13 | 8, 12 | bitri 240 | . . . . . 6 ⊢ ((y ∈ {x ∣ φ} ∧ (y ↑c 0c) ∈ NC ) ↔ ((y ↑c 0c) ∈ NC ∧ χ)) |
14 | spacis.7 | . . . . . . . 8 ⊢ (((M ∈ NC ∧ y ∈ ( Spac ‘M)) ∧ ((y ↑c 0c) ∈ NC ∧ χ)) → θ) | |
15 | ovex 5552 | . . . . . . . . 9 ⊢ (2c ↑c y) ∈ V | |
16 | spacis.4 | . . . . . . . . 9 ⊢ (x = (2c ↑c y) → (φ ↔ θ)) | |
17 | 15, 16 | elab 2986 | . . . . . . . 8 ⊢ ((2c ↑c y) ∈ {x ∣ φ} ↔ θ) |
18 | 14, 17 | sylibr 203 | . . . . . . 7 ⊢ (((M ∈ NC ∧ y ∈ ( Spac ‘M)) ∧ ((y ↑c 0c) ∈ NC ∧ χ)) → (2c ↑c y) ∈ {x ∣ φ}) |
19 | 18 | ex 423 | . . . . . 6 ⊢ ((M ∈ NC ∧ y ∈ ( Spac ‘M)) → (((y ↑c 0c) ∈ NC ∧ χ) → (2c ↑c y) ∈ {x ∣ φ})) |
20 | 13, 19 | syl5bi 208 | . . . . 5 ⊢ ((M ∈ NC ∧ y ∈ ( Spac ‘M)) → ((y ∈ {x ∣ φ} ∧ (y ↑c 0c) ∈ NC ) → (2c ↑c y) ∈ {x ∣ φ})) |
21 | 20 | ralrimiva 2698 | . . . 4 ⊢ (M ∈ NC → ∀y ∈ ( Spac ‘M)((y ∈ {x ∣ φ} ∧ (y ↑c 0c) ∈ NC ) → (2c ↑c y) ∈ {x ∣ φ})) |
22 | spacind 6288 | . . . 4 ⊢ (((M ∈ NC ∧ {x ∣ φ} ∈ V) ∧ (M ∈ {x ∣ φ} ∧ ∀y ∈ ( Spac ‘M)((y ∈ {x ∣ φ} ∧ (y ↑c 0c) ∈ NC ) → (2c ↑c y) ∈ {x ∣ φ}))) → ( Spac ‘M) ⊆ {x ∣ φ}) | |
23 | 1, 3, 7, 21, 22 | syl22anc 1183 | . . 3 ⊢ (M ∈ NC → ( Spac ‘M) ⊆ {x ∣ φ}) |
24 | 23 | sselda 3274 | . 2 ⊢ ((M ∈ NC ∧ N ∈ ( Spac ‘M)) → N ∈ {x ∣ φ}) |
25 | spacis.5 | . . . 4 ⊢ (x = N → (φ ↔ τ)) | |
26 | 25 | elabg 2987 | . . 3 ⊢ (N ∈ ( Spac ‘M) → (N ∈ {x ∣ φ} ↔ τ)) |
27 | 26 | adantl 452 | . 2 ⊢ ((M ∈ NC ∧ N ∈ ( Spac ‘M)) → (N ∈ {x ∣ φ} ↔ τ)) |
28 | 24, 27 | mpbid 201 | 1 ⊢ ((M ∈ NC ∧ N ∈ ( Spac ‘M)) → τ) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 176 ∧ wa 358 = wceq 1642 ∈ wcel 1710 {cab 2339 ∀wral 2615 Vcvv 2860 ⊆ wss 3258 0cc0c 4375 ‘cfv 4782 (class class class)co 5526 NC cncs 6089 2cc2c 6095 ↑c cce 6097 Spac cspac 6274 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-13 1712 ax-14 1714 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 ax-ext 2334 ax-nin 4079 ax-xp 4080 ax-cnv 4081 ax-1c 4082 ax-sset 4083 ax-si 4084 ax-ins2 4085 ax-ins3 4086 ax-typlower 4087 ax-sn 4088 |
This theorem depends on definitions: df-bi 177 df-or 359 df-an 360 df-3or 935 df-3an 936 df-nan 1288 df-tru 1319 df-ex 1542 df-nf 1545 df-sb 1649 df-eu 2208 df-mo 2209 df-clab 2340 df-cleq 2346 df-clel 2349 df-nfc 2479 df-ne 2519 df-ral 2620 df-rex 2621 df-reu 2622 df-rmo 2623 df-rab 2624 df-v 2862 df-sbc 3048 df-nin 3212 df-compl 3213 df-in 3214 df-un 3215 df-dif 3216 df-symdif 3217 df-ss 3260 df-pss 3262 df-nul 3552 df-if 3664 df-pw 3725 df-sn 3742 df-pr 3743 df-uni 3893 df-int 3928 df-opk 4059 df-1c 4137 df-pw1 4138 df-uni1 4139 df-xpk 4186 df-cnvk 4187 df-ins2k 4188 df-ins3k 4189 df-imak 4190 df-cok 4191 df-p6 4192 df-sik 4193 df-ssetk 4194 df-imagek 4195 df-idk 4196 df-iota 4340 df-0c 4378 df-addc 4379 df-nnc 4380 df-fin 4381 df-lefin 4441 df-ltfin 4442 df-ncfin 4443 df-tfin 4444 df-evenfin 4445 df-oddfin 4446 df-sfin 4447 df-spfin 4448 df-phi 4566 df-op 4567 df-proj1 4568 df-proj2 4569 df-opab 4624 df-br 4641 df-1st 4724 df-swap 4725 df-sset 4726 df-co 4727 df-ima 4728 df-si 4729 df-id 4768 df-xp 4785 df-cnv 4786 df-rn 4787 df-dm 4788 df-res 4789 df-fun 4790 df-fn 4791 df-f 4792 df-f1 4793 df-fo 4794 df-f1o 4795 df-fv 4796 df-2nd 4798 df-ov 5527 df-oprab 5529 df-mpt 5653 df-mpt2 5655 df-txp 5737 df-fix 5741 df-compose 5749 df-ins2 5751 df-ins3 5753 df-image 5755 df-ins4 5757 df-si3 5759 df-funs 5761 df-fns 5763 df-pw1fn 5767 df-fullfun 5769 df-clos1 5874 df-trans 5900 df-sym 5909 df-er 5910 df-ec 5948 df-qs 5952 df-map 6002 df-en 6030 df-ncs 6099 df-nc 6102 df-2c 6105 df-ce 6107 df-spac 6275 |
This theorem is referenced by: nchoicelem4 6293 |
Copyright terms: Public domain | W3C validator |