Step | Hyp | Ref
| Expression |
1 | | df-rex 2621 |
. . . 4
⊢ (∃y ∈ B
⟪y, x⟫ ∈
A ↔ ∃y(y ∈ B ∧
⟪y, x⟫ ∈
A)) |
2 | | exancom 1586 |
. . . 4
⊢ (∃y(y ∈ B ∧
⟪y, x⟫ ∈
A) ↔ ∃y(⟪y,
x⟫ ∈ A ∧ y ∈ B)) |
3 | | vex 2863 |
. . . . . . 7
⊢ x ∈
V |
4 | | elp6 4264 |
. . . . . . 7
⊢ (x ∈ V →
(x ∈
P6 ( ∼ (1c
×k V) ∪ SIk ∼ (A ∩ (B
×k V))) ↔ ∀z⟪z,
{x}⟫ ∈ ( ∼ (1c
×k V) ∪ SIk ∼ (A ∩ (B
×k V))))) |
5 | 3, 4 | ax-mp 5 |
. . . . . 6
⊢ (x ∈ P6 ( ∼ (1c
×k V) ∪ SIk ∼ (A ∩ (B
×k V))) ↔ ∀z⟪z,
{x}⟫ ∈ ( ∼ (1c
×k V) ∪ SIk ∼ (A ∩ (B
×k V)))) |
6 | | elun 3221 |
. . . . . . . 8
⊢ (⟪z, {x}⟫
∈ ( ∼ (1c
×k V) ∪ SIk ∼ (A ∩ (B
×k V))) ↔ (⟪z, {x}⟫
∈ ∼ (1c
×k V) ∨
⟪z, {x}⟫ ∈ SIk ∼ (A ∩ (B
×k V)))) |
7 | | opkex 4114 |
. . . . . . . . . . 11
⊢ ⟪z, {x}⟫
∈ V |
8 | 7 | elcompl 3226 |
. . . . . . . . . 10
⊢ (⟪z, {x}⟫
∈ ∼ (1c
×k V) ↔ ¬ ⟪z, {x}⟫
∈ (1c
×k V)) |
9 | | snex 4112 |
. . . . . . . . . . 11
⊢ {x} ∈
V |
10 | | vex 2863 |
. . . . . . . . . . . 12
⊢ z ∈
V |
11 | 10, 9 | opkelxpk 4249 |
. . . . . . . . . . 11
⊢ (⟪z, {x}⟫
∈ (1c
×k V) ↔ (z
∈ 1c ∧ {x} ∈ V)) |
12 | 9, 11 | mpbiran2 885 |
. . . . . . . . . 10
⊢ (⟪z, {x}⟫
∈ (1c
×k V) ↔ z
∈ 1c) |
13 | 8, 12 | xchbinx 301 |
. . . . . . . . 9
⊢ (⟪z, {x}⟫
∈ ∼ (1c
×k V) ↔ ¬ z ∈
1c) |
14 | 13 | orbi1i 506 |
. . . . . . . 8
⊢ ((⟪z, {x}⟫
∈ ∼ (1c
×k V) ∨
⟪z, {x}⟫ ∈ SIk ∼ (A ∩ (B
×k V))) ↔ (¬ z ∈
1c ∨ ⟪z, {x}⟫
∈ SIk ∼ (A ∩ (B
×k V)))) |
15 | | iman 413 |
. . . . . . . . 9
⊢ ((z ∈
1c → ⟪z,
{x}⟫ ∈ SIk ∼ (A ∩ (B
×k V))) ↔ ¬ (z ∈
1c ∧ ¬ ⟪z, {x}⟫
∈ SIk ∼ (A ∩ (B
×k V)))) |
16 | | imor 401 |
. . . . . . . . 9
⊢ ((z ∈
1c → ⟪z,
{x}⟫ ∈ SIk ∼ (A ∩ (B
×k V))) ↔ (¬ z ∈
1c ∨ ⟪z, {x}⟫
∈ SIk ∼ (A ∩ (B
×k V)))) |
17 | | el1c 4140 |
. . . . . . . . . . . 12
⊢ (z ∈
1c ↔ ∃y z = {y}) |
18 | 17 | anbi1i 676 |
. . . . . . . . . . 11
⊢ ((z ∈
1c ∧ ¬ ⟪z, {x}⟫
∈ SIk ∼ (A ∩ (B
×k V))) ↔ (∃y z = {y} ∧ ¬ ⟪z, {x}⟫
∈ SIk ∼ (A ∩ (B
×k V)))) |
19 | | 19.41v 1901 |
. . . . . . . . . . 11
⊢ (∃y(z = {y} ∧ ¬ ⟪z, {x}⟫
∈ SIk ∼ (A ∩ (B
×k V))) ↔ (∃y z = {y} ∧ ¬ ⟪z, {x}⟫
∈ SIk ∼ (A ∩ (B
×k V)))) |
20 | 18, 19 | bitr4i 243 |
. . . . . . . . . 10
⊢ ((z ∈
1c ∧ ¬ ⟪z, {x}⟫
∈ SIk ∼ (A ∩ (B
×k V))) ↔ ∃y(z = {y} ∧ ¬ ⟪z, {x}⟫
∈ SIk ∼ (A ∩ (B
×k V)))) |
21 | 20 | notbii 287 |
. . . . . . . . 9
⊢ (¬ (z ∈
1c ∧ ¬ ⟪z, {x}⟫
∈ SIk ∼ (A ∩ (B
×k V))) ↔ ¬ ∃y(z = {y} ∧ ¬ ⟪z, {x}⟫
∈ SIk ∼ (A ∩ (B
×k V)))) |
22 | 15, 16, 21 | 3bitr3i 266 |
. . . . . . . 8
⊢ ((¬ z ∈
1c ∨ ⟪z, {x}⟫
∈ SIk ∼ (A ∩ (B
×k V))) ↔ ¬ ∃y(z = {y} ∧ ¬ ⟪z, {x}⟫
∈ SIk ∼ (A ∩ (B
×k V)))) |
23 | 6, 14, 22 | 3bitri 262 |
. . . . . . 7
⊢ (⟪z, {x}⟫
∈ ( ∼ (1c
×k V) ∪ SIk ∼ (A ∩ (B
×k V))) ↔ ¬ ∃y(z = {y} ∧ ¬ ⟪z, {x}⟫
∈ SIk ∼ (A ∩ (B
×k V)))) |
24 | 23 | albii 1566 |
. . . . . 6
⊢ (∀z⟪z,
{x}⟫ ∈ ( ∼ (1c
×k V) ∪ SIk ∼ (A ∩ (B
×k V))) ↔ ∀z ¬
∃y(z = {y} ∧ ¬
⟪z, {x}⟫ ∈ SIk ∼ (A ∩ (B
×k V)))) |
25 | | alnex 1543 |
. . . . . . 7
⊢ (∀z ¬
∃y(z = {y} ∧ ¬
⟪z, {x}⟫ ∈ SIk ∼ (A ∩ (B
×k V))) ↔ ¬ ∃z∃y(z = {y} ∧ ¬ ⟪z, {x}⟫
∈ SIk ∼ (A ∩ (B
×k V)))) |
26 | | excom 1741 |
. . . . . . . 8
⊢ (∃z∃y(z = {y} ∧ ¬ ⟪z, {x}⟫
∈ SIk ∼ (A ∩ (B
×k V))) ↔ ∃y∃z(z = {y} ∧ ¬ ⟪z, {x}⟫
∈ SIk ∼ (A ∩ (B
×k V)))) |
27 | | snex 4112 |
. . . . . . . . . . 11
⊢ {y} ∈
V |
28 | | opkeq1 4060 |
. . . . . . . . . . . . . 14
⊢ (z = {y} →
⟪z, {x}⟫ = ⟪{y}, {x}⟫) |
29 | 28 | eleq1d 2419 |
. . . . . . . . . . . . 13
⊢ (z = {y} →
(⟪z, {x}⟫ ∈ SIk ∼ (A ∩ (B
×k V)) ↔ ⟪{y}, {x}⟫
∈ SIk ∼ (A ∩ (B
×k V)))) |
30 | | vex 2863 |
. . . . . . . . . . . . . . 15
⊢ y ∈
V |
31 | 30, 3 | opksnelsik 4266 |
. . . . . . . . . . . . . 14
⊢ (⟪{y}, {x}⟫
∈ SIk ∼ (A ∩ (B
×k V)) ↔ ⟪y, x⟫
∈ ∼ (A ∩ (B
×k V))) |
32 | | opkex 4114 |
. . . . . . . . . . . . . . 15
⊢ ⟪y, x⟫
∈ V |
33 | 32 | elcompl 3226 |
. . . . . . . . . . . . . 14
⊢ (⟪y, x⟫
∈ ∼ (A ∩ (B
×k V)) ↔ ¬ ⟪y, x⟫
∈ (A
∩ (B ×k
V))) |
34 | 31, 33 | bitri 240 |
. . . . . . . . . . . . 13
⊢ (⟪{y}, {x}⟫
∈ SIk ∼ (A ∩ (B
×k V)) ↔ ¬ ⟪y, x⟫
∈ (A
∩ (B ×k
V))) |
35 | 29, 34 | syl6bb 252 |
. . . . . . . . . . . 12
⊢ (z = {y} →
(⟪z, {x}⟫ ∈ SIk ∼ (A ∩ (B
×k V)) ↔ ¬ ⟪y, x⟫
∈ (A
∩ (B ×k
V)))) |
36 | 35 | notbid 285 |
. . . . . . . . . . 11
⊢ (z = {y} →
(¬ ⟪z, {x}⟫ ∈ SIk ∼ (A ∩ (B
×k V)) ↔ ¬ ¬ ⟪y, x⟫
∈ (A
∩ (B ×k
V)))) |
37 | 27, 36 | ceqsexv 2895 |
. . . . . . . . . 10
⊢ (∃z(z = {y} ∧ ¬ ⟪z, {x}⟫
∈ SIk ∼ (A ∩ (B
×k V))) ↔ ¬ ¬ ⟪y, x⟫
∈ (A
∩ (B ×k
V))) |
38 | | elin 3220 |
. . . . . . . . . . 11
⊢ (⟪y, x⟫
∈ (A
∩ (B ×k V))
↔ (⟪y, x⟫ ∈
A ∧
⟪y, x⟫ ∈
(B ×k
V))) |
39 | | notnot 282 |
. . . . . . . . . . 11
⊢ (⟪y, x⟫
∈ (A
∩ (B ×k V))
↔ ¬ ¬ ⟪y, x⟫ ∈
(A ∩ (B ×k V))) |
40 | 30, 3 | opkelxpk 4249 |
. . . . . . . . . . . . 13
⊢ (⟪y, x⟫
∈ (B
×k V) ↔ (y
∈ B ∧ x ∈ V)) |
41 | 3, 40 | mpbiran2 885 |
. . . . . . . . . . . 12
⊢ (⟪y, x⟫
∈ (B
×k V) ↔ y
∈ B) |
42 | 41 | anbi2i 675 |
. . . . . . . . . . 11
⊢ ((⟪y, x⟫
∈ A ∧ ⟪y,
x⟫ ∈ (B
×k V)) ↔ (⟪y, x⟫
∈ A ∧ y ∈ B)) |
43 | 38, 39, 42 | 3bitr3i 266 |
. . . . . . . . . 10
⊢ (¬ ¬
⟪y, x⟫ ∈
(A ∩ (B ×k V)) ↔
(⟪y, x⟫ ∈
A ∧
y ∈
B)) |
44 | 37, 43 | bitri 240 |
. . . . . . . . 9
⊢ (∃z(z = {y} ∧ ¬ ⟪z, {x}⟫
∈ SIk ∼ (A ∩ (B
×k V))) ↔ (⟪y, x⟫
∈ A ∧ y ∈ B)) |
45 | 44 | exbii 1582 |
. . . . . . . 8
⊢ (∃y∃z(z = {y} ∧ ¬ ⟪z, {x}⟫
∈ SIk ∼ (A ∩ (B
×k V))) ↔ ∃y(⟪y,
x⟫ ∈ A ∧ y ∈ B)) |
46 | 26, 45 | bitri 240 |
. . . . . . 7
⊢ (∃z∃y(z = {y} ∧ ¬ ⟪z, {x}⟫
∈ SIk ∼ (A ∩ (B
×k V))) ↔ ∃y(⟪y,
x⟫ ∈ A ∧ y ∈ B)) |
47 | 25, 46 | xchbinx 301 |
. . . . . 6
⊢ (∀z ¬
∃y(z = {y} ∧ ¬
⟪z, {x}⟫ ∈ SIk ∼ (A ∩ (B
×k V))) ↔ ¬ ∃y(⟪y,
x⟫ ∈ A ∧ y ∈ B)) |
48 | 5, 24, 47 | 3bitri 262 |
. . . . 5
⊢ (x ∈ P6 ( ∼ (1c
×k V) ∪ SIk ∼ (A ∩ (B
×k V))) ↔ ¬ ∃y(⟪y,
x⟫ ∈ A ∧ y ∈ B)) |
49 | 48 | con2bii 322 |
. . . 4
⊢ (∃y(⟪y,
x⟫ ∈ A ∧ y ∈ B) ↔
¬ x ∈
P6 ( ∼ (1c
×k V) ∪ SIk ∼ (A ∩ (B
×k V)))) |
50 | 1, 2, 49 | 3bitri 262 |
. . 3
⊢ (∃y ∈ B
⟪y, x⟫ ∈
A ↔ ¬ x ∈ P6 ( ∼ (1c
×k V) ∪ SIk ∼ (A ∩ (B
×k V)))) |
51 | 3 | elimak 4260 |
. . 3
⊢ (x ∈ (A “k B) ↔ ∃y ∈ B
⟪y, x⟫ ∈
A) |
52 | 3 | elcompl 3226 |
. . 3
⊢ (x ∈ ∼ P6 ( ∼ (1c
×k V) ∪ SIk ∼ (A ∩ (B
×k V))) ↔ ¬ x ∈ P6 ( ∼ (1c
×k V) ∪ SIk ∼ (A ∩ (B
×k V)))) |
53 | 50, 51, 52 | 3bitr4i 268 |
. 2
⊢ (x ∈ (A “k B) ↔ x
∈ ∼ P6 (
∼ (1c ×k V) ∪ SIk ∼ (A ∩ (B
×k V)))) |
54 | 53 | eqriv 2350 |
1
⊢ (A “k B) = ∼ P6 ( ∼
(1c ×k V) ∪ SIk ∼ (A ∩ (B
×k V))) |