Proof of Theorem fnfullfun
Step | Hyp | Ref
| Expression |
1 | | fnfullfunlem2 5858 |
. . . . 5
⊢ Fun (( I ∘ F) ∖ ( ∼ I ∘
F)) |
2 | | funfn 5137 |
. . . . 5
⊢ (Fun (( I ∘ F) ∖ ( ∼ I ∘
F)) ↔ (( I ∘ F) ∖ ( ∼ I ∘
F)) Fn dom (( I ∘ F) ∖ ( ∼ I ∘
F))) |
3 | 1, 2 | mpbi 199 |
. . . 4
⊢ (( I ∘ F) ∖ ( ∼ I ∘
F)) Fn dom (( I ∘ F) ∖ ( ∼ I ∘
F)) |
4 | | 0ex 4111 |
. . . . 5
⊢ ∅ ∈
V |
5 | | fnconstg 5253 |
. . . . 5
⊢ (∅ ∈ V → (
∼ dom (( I ∘ F) ∖ ( ∼ I
∘ F))
× {∅}) Fn ∼ dom (( I ∘ F) ∖ ( ∼ I ∘
F))) |
6 | 4, 5 | ax-mp 5 |
. . . 4
⊢ ( ∼ dom (( I
∘ F)
∖ ( ∼ I ∘ F)) ×
{∅}) Fn ∼ dom (( I ∘ F) ∖ ( ∼ I ∘
F)) |
7 | 3, 6 | pm3.2i 441 |
. . 3
⊢ ((( I ∘ F) ∖ ( ∼ I ∘
F)) Fn dom (( I ∘ F) ∖ ( ∼ I ∘
F)) ∧ (
∼ dom (( I ∘ F) ∖ ( ∼ I
∘ F))
× {∅}) Fn ∼ dom (( I ∘ F) ∖ ( ∼ I ∘
F))) |
8 | | incompl 4074 |
. . 3
⊢ (dom (( I ∘ F) ∖ ( ∼ I ∘
F)) ∩ ∼ dom (( I ∘ F) ∖ ( ∼ I ∘
F))) = ∅ |
9 | | fnun 5190 |
. . 3
⊢ ((((( I ∘ F) ∖ ( ∼ I ∘
F)) Fn dom (( I ∘ F) ∖ ( ∼ I ∘
F)) ∧ (
∼ dom (( I ∘ F) ∖ ( ∼ I
∘ F))
× {∅}) Fn ∼ dom (( I ∘ F) ∖ ( ∼ I ∘
F))) ∧
(dom (( I ∘ F) ∖ ( ∼ I
∘ F))
∩ ∼ dom (( I ∘ F) ∖ ( ∼ I
∘ F))) =
∅) → ((( I ∘ F) ∖ ( ∼ I ∘
F)) ∪ ( ∼ dom (( I ∘ F) ∖ ( ∼ I ∘
F)) × {∅})) Fn (dom (( I ∘ F) ∖ ( ∼ I ∘
F)) ∪ ∼ dom (( I ∘ F) ∖ ( ∼ I ∘
F)))) |
10 | 7, 8, 9 | mp2an 653 |
. 2
⊢ ((( I ∘ F) ∖ ( ∼ I ∘
F)) ∪ ( ∼ dom (( I ∘ F) ∖ ( ∼ I ∘
F)) × {∅})) Fn (dom (( I ∘ F) ∖ ( ∼ I ∘
F)) ∪ ∼ dom (( I ∘ F) ∖ ( ∼ I ∘
F))) |
11 | | df-fullfun 5769 |
. . 3
⊢ FullFun F = ((( I
∘ F)
∖ ( ∼ I ∘ F)) ∪ (
∼ dom (( I ∘ F) ∖ ( ∼ I
∘ F))
× {∅})) |
12 | | uncompl 4075 |
. . . 4
⊢ (dom (( I ∘ F) ∖ ( ∼ I ∘
F)) ∪ ∼ dom (( I ∘ F) ∖ ( ∼ I ∘
F))) = V |
13 | 12 | eqcomi 2357 |
. . 3
⊢ V = (dom (( I ∘ F) ∖ ( ∼ I ∘
F)) ∪ ∼ dom (( I ∘ F) ∖ ( ∼ I ∘
F))) |
14 | | fneq1 5174 |
. . . 4
⊢ ( FullFun F = ((( I
∘ F)
∖ ( ∼ I ∘ F)) ∪ (
∼ dom (( I ∘ F) ∖ ( ∼ I
∘ F))
× {∅})) → ( FullFun F Fn V
↔ ((( I ∘ F) ∖ ( ∼ I
∘ F))
∪ ( ∼ dom (( I ∘ F) ∖ ( ∼ I
∘ F))
× {∅})) Fn V)) |
15 | | fneq2 5175 |
. . . 4
⊢ (V = (dom (( I
∘ F)
∖ ( ∼ I ∘ F)) ∪
∼ dom (( I ∘ F) ∖ ( ∼ I
∘ F)))
→ (((( I ∘ F) ∖ ( ∼ I
∘ F))
∪ ( ∼ dom (( I ∘ F) ∖ ( ∼ I
∘ F))
× {∅})) Fn V ↔ ((( I ∘ F) ∖ ( ∼ I ∘
F)) ∪ ( ∼ dom (( I ∘ F) ∖ ( ∼ I ∘
F)) × {∅})) Fn (dom (( I ∘ F) ∖ ( ∼ I ∘
F)) ∪ ∼ dom (( I ∘ F) ∖ ( ∼ I ∘
F))))) |
16 | 14, 15 | sylan9bb 680 |
. . 3
⊢ (( FullFun F = ((( I
∘ F)
∖ ( ∼ I ∘ F)) ∪ (
∼ dom (( I ∘ F) ∖ ( ∼ I
∘ F))
× {∅})) ∧ V = (dom (( I ∘
F) ∖ (
∼ I ∘ F)) ∪ ∼ dom (( I ∘ F) ∖ ( ∼ I ∘
F)))) → ( FullFun F Fn V
↔ ((( I ∘ F) ∖ ( ∼ I
∘ F))
∪ ( ∼ dom (( I ∘ F) ∖ ( ∼ I
∘ F))
× {∅})) Fn (dom (( I ∘ F) ∖ ( ∼ I ∘
F)) ∪ ∼ dom (( I ∘ F) ∖ ( ∼ I ∘
F))))) |
17 | 11, 13, 16 | mp2an 653 |
. 2
⊢ ( FullFun F Fn V
↔ ((( I ∘ F) ∖ ( ∼ I
∘ F))
∪ ( ∼ dom (( I ∘ F) ∖ ( ∼ I
∘ F))
× {∅})) Fn (dom (( I ∘ F) ∖ ( ∼ I ∘
F)) ∪ ∼ dom (( I ∘ F) ∖ ( ∼ I ∘
F)))) |
18 | 10, 17 | mpbir 200 |
1
⊢ FullFun F Fn
V |