![]() |
New Foundations Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > NFE Home > Th. List > brfns | GIF version |
Description: Binary relationship form of Fns relationship. (Contributed by SF, 23-Feb-2015.) |
Ref | Expression |
---|---|
brfns.1 | ⊢ F ∈ V |
Ref | Expression |
---|---|
brfns | ⊢ (F Fns A ↔ F Fn A) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | brex 4689 | . . 3 ⊢ (F Fns A → (F ∈ V ∧ A ∈ V)) | |
2 | 1 | simprd 449 | . 2 ⊢ (F Fns A → A ∈ V) |
3 | fndm 5182 | . . . 4 ⊢ (F Fn A → dom F = A) | |
4 | 3 | eqcomd 2358 | . . 3 ⊢ (F Fn A → A = dom F) |
5 | brfns.1 | . . . 4 ⊢ F ∈ V | |
6 | dmexg 5105 | . . . 4 ⊢ (F ∈ V → dom F ∈ V) | |
7 | 5, 6 | ax-mp 8 | . . 3 ⊢ dom F ∈ V |
8 | 4, 7 | syl6eqel 2441 | . 2 ⊢ (F Fn A → A ∈ V) |
9 | breq2 4643 | . . 3 ⊢ (a = A → (F Fns a ↔ F Fns A)) | |
10 | fneq2 5174 | . . 3 ⊢ (a = A → (F Fn a ↔ F Fn A)) | |
11 | vex 2862 | . . . 4 ⊢ a ∈ V | |
12 | fneq1 5173 | . . . 4 ⊢ (f = F → (f Fn b ↔ F Fn b)) | |
13 | fneq2 5174 | . . . 4 ⊢ (b = a → (F Fn b ↔ F Fn a)) | |
14 | df-fns 5762 | . . . 4 ⊢ Fns = {〈f, b〉 ∣ f Fn b} | |
15 | 5, 11, 12, 13, 14 | brab 4709 | . . 3 ⊢ (F Fns a ↔ F Fn a) |
16 | 9, 10, 15 | vtoclbg 2915 | . 2 ⊢ (A ∈ V → (F Fns A ↔ F Fn A)) |
17 | 2, 8, 16 | pm5.21nii 342 | 1 ⊢ (F Fns A ↔ F Fn A) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 176 ∈ wcel 1710 Vcvv 2859 class class class wbr 4639 dom cdm 4772 Fn wfn 4776 Fns cfns 5761 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-3 7 ax-mp 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-13 1712 ax-14 1714 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 ax-ext 2334 ax-nin 4078 ax-xp 4079 ax-cnv 4080 ax-1c 4081 ax-sset 4082 ax-si 4083 ax-ins2 4084 ax-ins3 4085 ax-typlower 4086 ax-sn 4087 |
This theorem depends on definitions: df-bi 177 df-or 359 df-an 360 df-3or 935 df-3an 936 df-nan 1288 df-tru 1319 df-ex 1542 df-nf 1545 df-sb 1649 df-eu 2208 df-mo 2209 df-clab 2340 df-cleq 2346 df-clel 2349 df-nfc 2478 df-ne 2518 df-ral 2619 df-rex 2620 df-reu 2621 df-rmo 2622 df-rab 2623 df-v 2861 df-sbc 3047 df-nin 3211 df-compl 3212 df-in 3213 df-un 3214 df-dif 3215 df-symdif 3216 df-ss 3259 df-pss 3261 df-nul 3551 df-if 3663 df-pw 3724 df-sn 3741 df-pr 3742 df-uni 3892 df-int 3927 df-opk 4058 df-1c 4136 df-pw1 4137 df-uni1 4138 df-xpk 4185 df-cnvk 4186 df-ins2k 4187 df-ins3k 4188 df-imak 4189 df-cok 4190 df-p6 4191 df-sik 4192 df-ssetk 4193 df-imagek 4194 df-idk 4195 df-iota 4339 df-0c 4377 df-addc 4378 df-nnc 4379 df-fin 4380 df-lefin 4440 df-ltfin 4441 df-ncfin 4442 df-tfin 4443 df-evenfin 4444 df-oddfin 4445 df-sfin 4446 df-spfin 4447 df-phi 4565 df-op 4566 df-proj1 4567 df-proj2 4568 df-opab 4623 df-br 4640 df-swap 4724 df-co 4726 df-ima 4727 df-cnv 4785 df-rn 4786 df-dm 4787 df-fun 4789 df-fn 4790 df-fns 5762 |
This theorem is referenced by: enex 6031 ovcelem1 6171 ceex 6174 |
Copyright terms: Public domain | W3C validator |