Step | Hyp | Ref
| Expression |
1 | | vex 2863 |
. . . . . 6
⊢ x ∈
V |
2 | | vex 2863 |
. . . . . 6
⊢ z ∈
V |
3 | 1, 2 | opkelcok 4263 |
. . . . 5
⊢ (⟪x, z⟫
∈ (A
∘k B) ↔ ∃y(⟪x,
y⟫ ∈ B ∧ ⟪y,
z⟫ ∈ A)) |
4 | 3 | rexbii 2640 |
. . . 4
⊢ (∃x ∈ C
⟪x, z⟫ ∈
(A ∘k B) ↔ ∃x ∈ C ∃y(⟪x,
y⟫ ∈ B ∧ ⟪y,
z⟫ ∈ A)) |
5 | | rexcom4 2879 |
. . . 4
⊢ (∃x ∈ C ∃y(⟪x,
y⟫ ∈ B ∧ ⟪y,
z⟫ ∈ A) ↔
∃y∃x ∈ C
(⟪x, y⟫ ∈
B ∧
⟪y, z⟫ ∈
A)) |
6 | | df-rex 2621 |
. . . . 5
⊢ (∃y ∈ (B
“k C)⟪y,
z⟫ ∈ A ↔
∃y(y ∈ (B
“k C) ∧ ⟪y,
z⟫ ∈ A)) |
7 | | vex 2863 |
. . . . . . . . 9
⊢ y ∈
V |
8 | 7 | elimak 4260 |
. . . . . . . 8
⊢ (y ∈ (B “k C) ↔ ∃x ∈ C
⟪x, y⟫ ∈
B) |
9 | 8 | anbi1i 676 |
. . . . . . 7
⊢ ((y ∈ (B “k C) ∧
⟪y, z⟫ ∈
A) ↔ (∃x ∈ C
⟪x, y⟫ ∈
B ∧
⟪y, z⟫ ∈
A)) |
10 | | r19.41v 2765 |
. . . . . . 7
⊢ (∃x ∈ C
(⟪x, y⟫ ∈
B ∧
⟪y, z⟫ ∈
A) ↔ (∃x ∈ C
⟪x, y⟫ ∈
B ∧
⟪y, z⟫ ∈
A)) |
11 | 9, 10 | bitr4i 243 |
. . . . . 6
⊢ ((y ∈ (B “k C) ∧
⟪y, z⟫ ∈
A) ↔ ∃x ∈ C
(⟪x, y⟫ ∈
B ∧
⟪y, z⟫ ∈
A)) |
12 | 11 | exbii 1582 |
. . . . 5
⊢ (∃y(y ∈ (B “k C) ∧
⟪y, z⟫ ∈
A) ↔ ∃y∃x ∈ C
(⟪x, y⟫ ∈
B ∧
⟪y, z⟫ ∈
A)) |
13 | 6, 12 | bitr2i 241 |
. . . 4
⊢ (∃y∃x ∈ C
(⟪x, y⟫ ∈
B ∧
⟪y, z⟫ ∈
A) ↔ ∃y ∈ (B
“k C)⟪y,
z⟫ ∈ A) |
14 | 4, 5, 13 | 3bitri 262 |
. . 3
⊢ (∃x ∈ C
⟪x, z⟫ ∈
(A ∘k B) ↔ ∃y ∈ (B
“k C)⟪y,
z⟫ ∈ A) |
15 | 2 | elimak 4260 |
. . 3
⊢ (z ∈ ((A ∘k B) “k C) ↔ ∃x ∈ C
⟪x, z⟫ ∈
(A ∘k B)) |
16 | 2 | elimak 4260 |
. . 3
⊢ (z ∈ (A “k (B “k C)) ↔ ∃y ∈ (B
“k C)⟪y,
z⟫ ∈ A) |
17 | 14, 15, 16 | 3bitr4i 268 |
. 2
⊢ (z ∈ ((A ∘k B) “k C) ↔ z
∈ (A
“k (B
“k C))) |
18 | 17 | eqriv 2350 |
1
⊢ ((A ∘k B) “k C) = (A
“k (B
“k C)) |