![]() |
New Foundations Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > NFE Home > Th. List > inssdif0 | GIF version |
Description: Intersection, subclass, and difference relationship. (Contributed by NM, 27-Oct-1996.) (Proof shortened by Andrew Salmon, 26-Jun-2011.) (Proof shortened by Wolf Lammen, 30-Sep-2014.) |
Ref | Expression |
---|---|
inssdif0 | ⊢ ((A ∩ B) ⊆ C ↔ (A ∩ (B ∖ C)) = ∅) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elin 3219 | . . . . . 6 ⊢ (x ∈ (A ∩ B) ↔ (x ∈ A ∧ x ∈ B)) | |
2 | 1 | imbi1i 315 | . . . . 5 ⊢ ((x ∈ (A ∩ B) → x ∈ C) ↔ ((x ∈ A ∧ x ∈ B) → x ∈ C)) |
3 | iman 413 | . . . . 5 ⊢ (((x ∈ A ∧ x ∈ B) → x ∈ C) ↔ ¬ ((x ∈ A ∧ x ∈ B) ∧ ¬ x ∈ C)) | |
4 | 2, 3 | bitri 240 | . . . 4 ⊢ ((x ∈ (A ∩ B) → x ∈ C) ↔ ¬ ((x ∈ A ∧ x ∈ B) ∧ ¬ x ∈ C)) |
5 | eldif 3221 | . . . . . 6 ⊢ (x ∈ (B ∖ C) ↔ (x ∈ B ∧ ¬ x ∈ C)) | |
6 | 5 | anbi2i 675 | . . . . 5 ⊢ ((x ∈ A ∧ x ∈ (B ∖ C)) ↔ (x ∈ A ∧ (x ∈ B ∧ ¬ x ∈ C))) |
7 | elin 3219 | . . . . 5 ⊢ (x ∈ (A ∩ (B ∖ C)) ↔ (x ∈ A ∧ x ∈ (B ∖ C))) | |
8 | anass 630 | . . . . 5 ⊢ (((x ∈ A ∧ x ∈ B) ∧ ¬ x ∈ C) ↔ (x ∈ A ∧ (x ∈ B ∧ ¬ x ∈ C))) | |
9 | 6, 7, 8 | 3bitr4ri 269 | . . . 4 ⊢ (((x ∈ A ∧ x ∈ B) ∧ ¬ x ∈ C) ↔ x ∈ (A ∩ (B ∖ C))) |
10 | 4, 9 | xchbinx 301 | . . 3 ⊢ ((x ∈ (A ∩ B) → x ∈ C) ↔ ¬ x ∈ (A ∩ (B ∖ C))) |
11 | 10 | albii 1566 | . 2 ⊢ (∀x(x ∈ (A ∩ B) → x ∈ C) ↔ ∀x ¬ x ∈ (A ∩ (B ∖ C))) |
12 | dfss2 3262 | . 2 ⊢ ((A ∩ B) ⊆ C ↔ ∀x(x ∈ (A ∩ B) → x ∈ C)) | |
13 | eq0 3564 | . 2 ⊢ ((A ∩ (B ∖ C)) = ∅ ↔ ∀x ¬ x ∈ (A ∩ (B ∖ C))) | |
14 | 11, 12, 13 | 3bitr4i 268 | 1 ⊢ ((A ∩ B) ⊆ C ↔ (A ∩ (B ∖ C)) = ∅) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 176 ∧ wa 358 ∀wal 1540 = wceq 1642 ∈ wcel 1710 ∖ cdif 3206 ∩ cin 3208 ⊆ wss 3257 ∅c0 3550 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-3 7 ax-mp 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 ax-ext 2334 |
This theorem depends on definitions: df-bi 177 df-or 359 df-an 360 df-nan 1288 df-tru 1319 df-ex 1542 df-nf 1545 df-sb 1649 df-clab 2340 df-cleq 2346 df-clel 2349 df-nfc 2478 df-ne 2518 df-v 2861 df-nin 3211 df-compl 3212 df-in 3213 df-dif 3215 df-ss 3259 df-nul 3551 |
This theorem is referenced by: disjdif 3622 |
Copyright terms: Public domain | W3C validator |