New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > dffun2 | GIF version |
Description: Alternate definition of a function. (Contributed by set.mm contributors, 29-Dec-1996.) (Revised by set.mm contributors, 23-Apr-2004.) (Revised by Scott Fenton, 16-Apr-2021.) |
Ref | Expression |
---|---|
dffun2 | ⊢ (Fun A ↔ ∀x∀y∀z((xAy ∧ xAz) → y = z)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-fun 4789 | . 2 ⊢ (Fun A ↔ (A ∘ ◡A) ⊆ I ) | |
2 | ssrel 4844 | . 2 ⊢ ((A ∘ ◡A) ⊆ I ↔ ∀y∀z(〈y, z〉 ∈ (A ∘ ◡A) → 〈y, z〉 ∈ I )) | |
3 | opelco 4884 | . . . . . . 7 ⊢ (〈y, z〉 ∈ (A ∘ ◡A) ↔ ∃x(y◡Ax ∧ xAz)) | |
4 | brcnv 4892 | . . . . . . . . 9 ⊢ (y◡Ax ↔ xAy) | |
5 | 4 | anbi1i 676 | . . . . . . . 8 ⊢ ((y◡Ax ∧ xAz) ↔ (xAy ∧ xAz)) |
6 | 5 | exbii 1582 | . . . . . . 7 ⊢ (∃x(y◡Ax ∧ xAz) ↔ ∃x(xAy ∧ xAz)) |
7 | 3, 6 | bitri 240 | . . . . . 6 ⊢ (〈y, z〉 ∈ (A ∘ ◡A) ↔ ∃x(xAy ∧ xAz)) |
8 | df-br 4640 | . . . . . . 7 ⊢ (y I z ↔ 〈y, z〉 ∈ I ) | |
9 | vex 2862 | . . . . . . . 8 ⊢ z ∈ V | |
10 | 9 | ideq 4870 | . . . . . . 7 ⊢ (y I z ↔ y = z) |
11 | 8, 10 | bitr3i 242 | . . . . . 6 ⊢ (〈y, z〉 ∈ I ↔ y = z) |
12 | 7, 11 | imbi12i 316 | . . . . 5 ⊢ ((〈y, z〉 ∈ (A ∘ ◡A) → 〈y, z〉 ∈ I ) ↔ (∃x(xAy ∧ xAz) → y = z)) |
13 | 19.23v 1891 | . . . . 5 ⊢ (∀x((xAy ∧ xAz) → y = z) ↔ (∃x(xAy ∧ xAz) → y = z)) | |
14 | 12, 13 | bitr4i 243 | . . . 4 ⊢ ((〈y, z〉 ∈ (A ∘ ◡A) → 〈y, z〉 ∈ I ) ↔ ∀x((xAy ∧ xAz) → y = z)) |
15 | 14 | 2albii 1567 | . . 3 ⊢ (∀y∀z(〈y, z〉 ∈ (A ∘ ◡A) → 〈y, z〉 ∈ I ) ↔ ∀y∀z∀x((xAy ∧ xAz) → y = z)) |
16 | alrot3 1738 | . . 3 ⊢ (∀x∀y∀z((xAy ∧ xAz) → y = z) ↔ ∀y∀z∀x((xAy ∧ xAz) → y = z)) | |
17 | 15, 16 | bitr4i 243 | . 2 ⊢ (∀y∀z(〈y, z〉 ∈ (A ∘ ◡A) → 〈y, z〉 ∈ I ) ↔ ∀x∀y∀z((xAy ∧ xAz) → y = z)) |
18 | 1, 2, 17 | 3bitri 262 | 1 ⊢ (Fun A ↔ ∀x∀y∀z((xAy ∧ xAz) → y = z)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 176 ∧ wa 358 ∀wal 1540 ∃wex 1541 ∈ wcel 1710 ⊆ wss 3257 〈cop 4561 class class class wbr 4639 ∘ ccom 4721 I cid 4763 ◡ccnv 4771 Fun wfun 4775 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-13 1712 ax-14 1714 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 ax-ext 2334 ax-nin 4078 ax-xp 4079 ax-cnv 4080 ax-1c 4081 ax-sset 4082 ax-si 4083 ax-ins2 4084 ax-ins3 4085 ax-typlower 4086 ax-sn 4087 |
This theorem depends on definitions: df-bi 177 df-or 359 df-an 360 df-3or 935 df-3an 936 df-nan 1288 df-tru 1319 df-ex 1542 df-nf 1545 df-sb 1649 df-eu 2208 df-mo 2209 df-clab 2340 df-cleq 2346 df-clel 2349 df-nfc 2478 df-ne 2518 df-ral 2619 df-rex 2620 df-reu 2621 df-rmo 2622 df-rab 2623 df-v 2861 df-sbc 3047 df-nin 3211 df-compl 3212 df-in 3213 df-un 3214 df-dif 3215 df-symdif 3216 df-ss 3259 df-pss 3261 df-nul 3551 df-if 3663 df-pw 3724 df-sn 3741 df-pr 3742 df-uni 3892 df-int 3927 df-opk 4058 df-1c 4136 df-pw1 4137 df-uni1 4138 df-xpk 4185 df-cnvk 4186 df-ins2k 4187 df-ins3k 4188 df-imak 4189 df-cok 4190 df-p6 4191 df-sik 4192 df-ssetk 4193 df-imagek 4194 df-idk 4195 df-iota 4339 df-0c 4377 df-addc 4378 df-nnc 4379 df-fin 4380 df-lefin 4440 df-ltfin 4441 df-ncfin 4442 df-tfin 4443 df-evenfin 4444 df-oddfin 4445 df-sfin 4446 df-spfin 4447 df-phi 4565 df-op 4566 df-proj1 4567 df-proj2 4568 df-opab 4623 df-br 4640 df-co 4726 df-id 4767 df-cnv 4785 df-fun 4789 |
This theorem is referenced by: dffun3 5120 dffun4 5121 fun11 5159 1stfo 5505 2ndfo 5506 swapf1o 5511 fununiq 5517 funsi 5520 fntxp 5804 fnpprod 5843 fnfullfunlem2 5857 fvfullfunlem3 5863 fundmen 6043 enmap2lem4 6066 enmap1lem4 6072 enprmaplem3 6078 fnfrec 6320 |
Copyright terms: Public domain | W3C validator |