NFE Home New Foundations Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  NFE Home  >  Th. List  >  intasym GIF version

Theorem intasym 5029
Description: Two ways of saying a relation is antisymmetric. Definition of antisymmetry in [Schechter] p. 51. (The proof was shortened by Andrew Salmon, 27-Aug-2011.) (Contributed by set.mm contributors, 9-Sep-2004.) (Revised by set.mm contributors, 27-Aug-2011.)
Assertion
Ref Expression
intasym ((RR) I ↔ xy((xRy yRx) → x = y))
Distinct variable group:   x,y,R

Proof of Theorem intasym
StepHypRef Expression
1 ssrel 4845 . 2 ((RR) I ↔ xy(x, y (RR) → x, y I ))
2 df-br 4641 . . . . 5 (x(RR)yx, y (RR))
3 brin 4694 . . . . . 6 (x(RR)y ↔ (xRy xRy))
4 brcnv 4893 . . . . . . 7 (xRyyRx)
54anbi2i 675 . . . . . 6 ((xRy xRy) ↔ (xRy yRx))
63, 5bitri 240 . . . . 5 (x(RR)y ↔ (xRy yRx))
72, 6bitr3i 242 . . . 4 (x, y (RR) ↔ (xRy yRx))
8 df-br 4641 . . . . 5 (x I yx, y I )
9 vex 2863 . . . . . 6 y V
109ideq 4871 . . . . 5 (x I yx = y)
118, 10bitr3i 242 . . . 4 (x, y I ↔ x = y)
127, 11imbi12i 316 . . 3 ((x, y (RR) → x, y I ) ↔ ((xRy yRx) → x = y))
13122albii 1567 . 2 (xy(x, y (RR) → x, y I ) ↔ xy((xRy yRx) → x = y))
141, 13bitri 240 1 ((RR) I ↔ xy((xRy yRx) → x = y))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 176   wa 358  wal 1540   wcel 1710  cin 3209   wss 3258  cop 4562   class class class wbr 4640   I cid 4764  ccnv 4772
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1546  ax-5 1557  ax-17 1616  ax-9 1654  ax-8 1675  ax-13 1712  ax-14 1714  ax-6 1729  ax-7 1734  ax-11 1746  ax-12 1925  ax-ext 2334  ax-nin 4079  ax-xp 4080  ax-cnv 4081  ax-1c 4082  ax-sset 4083  ax-si 4084  ax-ins2 4085  ax-ins3 4086  ax-typlower 4087  ax-sn 4088
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-nan 1288  df-tru 1319  df-ex 1542  df-nf 1545  df-sb 1649  df-eu 2208  df-mo 2209  df-clab 2340  df-cleq 2346  df-clel 2349  df-nfc 2479  df-ne 2519  df-ral 2620  df-rex 2621  df-reu 2622  df-rmo 2623  df-rab 2624  df-v 2862  df-sbc 3048  df-nin 3212  df-compl 3213  df-in 3214  df-un 3215  df-dif 3216  df-symdif 3217  df-ss 3260  df-pss 3262  df-nul 3552  df-if 3664  df-pw 3725  df-sn 3742  df-pr 3743  df-uni 3893  df-int 3928  df-opk 4059  df-1c 4137  df-pw1 4138  df-uni1 4139  df-xpk 4186  df-cnvk 4187  df-ins2k 4188  df-ins3k 4189  df-imak 4190  df-cok 4191  df-p6 4192  df-sik 4193  df-ssetk 4194  df-imagek 4195  df-idk 4196  df-iota 4340  df-0c 4378  df-addc 4379  df-nnc 4380  df-fin 4381  df-lefin 4441  df-ltfin 4442  df-ncfin 4443  df-tfin 4444  df-evenfin 4445  df-oddfin 4446  df-sfin 4447  df-spfin 4448  df-phi 4566  df-op 4567  df-proj1 4568  df-proj2 4569  df-opab 4624  df-br 4641  df-id 4768  df-cnv 4786
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator