NFE Home New Foundations Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  NFE Home  >  Th. List  >  elsuc GIF version

Theorem elsuc 4414
Description: Membership in a successor. Theorem X.1.16 of [Rosser] p. 279. (Contributed by SF, 16-Jan-2015.)
Assertion
Ref Expression
elsuc (A (M +c 1c) ↔ b M x bA = (b ∪ {x}))
Distinct variable groups:   A,b,x   M,b
Allowed substitution hint:   M(x)

Proof of Theorem elsuc
Dummy variable y is distinct from all other variables.
StepHypRef Expression
1 eladdc 4399 . 2 (A (M +c 1c) ↔ b M y 1c ((by) = A = (by)))
2 snex 4112 . . . . . . 7 {x} V
3 ineq2 3452 . . . . . . . . 9 (y = {x} → (by) = (b ∩ {x}))
43eqeq1d 2361 . . . . . . . 8 (y = {x} → ((by) = ↔ (b ∩ {x}) = ))
5 uneq2 3413 . . . . . . . . 9 (y = {x} → (by) = (b ∪ {x}))
65eqeq2d 2364 . . . . . . . 8 (y = {x} → (A = (by) ↔ A = (b ∪ {x})))
74, 6anbi12d 691 . . . . . . 7 (y = {x} → (((by) = A = (by)) ↔ ((b ∩ {x}) = A = (b ∪ {x}))))
82, 7ceqsexv 2895 . . . . . 6 (y(y = {x} ((by) = A = (by))) ↔ ((b ∩ {x}) = A = (b ∪ {x})))
9 disjsn 3787 . . . . . . . 8 ((b ∩ {x}) = ↔ ¬ x b)
10 vex 2863 . . . . . . . . 9 x V
1110elcompl 3226 . . . . . . . 8 (x b ↔ ¬ x b)
129, 11bitr4i 243 . . . . . . 7 ((b ∩ {x}) = x b)
1312anbi1i 676 . . . . . 6 (((b ∩ {x}) = A = (b ∪ {x})) ↔ (x b A = (b ∪ {x})))
148, 13bitri 240 . . . . 5 (y(y = {x} ((by) = A = (by))) ↔ (x b A = (b ∪ {x})))
1514exbii 1582 . . . 4 (xy(y = {x} ((by) = A = (by))) ↔ x(x b A = (b ∪ {x})))
16 df-rex 2621 . . . . 5 (y 1c ((by) = A = (by)) ↔ y(y 1c ((by) = A = (by))))
17 el1c 4140 . . . . . . . . 9 (y 1cx y = {x})
1817anbi1i 676 . . . . . . . 8 ((y 1c ((by) = A = (by))) ↔ (x y = {x} ((by) = A = (by))))
19 19.41v 1901 . . . . . . . 8 (x(y = {x} ((by) = A = (by))) ↔ (x y = {x} ((by) = A = (by))))
2018, 19bitr4i 243 . . . . . . 7 ((y 1c ((by) = A = (by))) ↔ x(y = {x} ((by) = A = (by))))
2120exbii 1582 . . . . . 6 (y(y 1c ((by) = A = (by))) ↔ yx(y = {x} ((by) = A = (by))))
22 excom 1741 . . . . . 6 (yx(y = {x} ((by) = A = (by))) ↔ xy(y = {x} ((by) = A = (by))))
2321, 22bitri 240 . . . . 5 (y(y 1c ((by) = A = (by))) ↔ xy(y = {x} ((by) = A = (by))))
2416, 23bitri 240 . . . 4 (y 1c ((by) = A = (by)) ↔ xy(y = {x} ((by) = A = (by))))
25 df-rex 2621 . . . 4 (x bA = (b ∪ {x}) ↔ x(x b A = (b ∪ {x})))
2615, 24, 253bitr4i 268 . . 3 (y 1c ((by) = A = (by)) ↔ x bA = (b ∪ {x}))
2726rexbii 2640 . 2 (b M y 1c ((by) = A = (by)) ↔ b M x bA = (b ∪ {x}))
281, 27bitri 240 1 (A (M +c 1c) ↔ b M x bA = (b ∪ {x}))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wb 176   wa 358  wex 1541   = wceq 1642   wcel 1710  wrex 2616  ccompl 3206  cun 3208  cin 3209  c0 3551  {csn 3738  1cc1c 4135   +c cplc 4376
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1546  ax-5 1557  ax-17 1616  ax-9 1654  ax-8 1675  ax-6 1729  ax-7 1734  ax-11 1746  ax-12 1925  ax-ext 2334  ax-nin 4079  ax-sn 4088
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-nan 1288  df-tru 1319  df-ex 1542  df-nf 1545  df-sb 1649  df-clab 2340  df-cleq 2346  df-clel 2349  df-nfc 2479  df-ne 2519  df-ral 2620  df-rex 2621  df-v 2862  df-nin 3212  df-compl 3213  df-in 3214  df-un 3215  df-dif 3216  df-ss 3260  df-nul 3552  df-sn 3742  df-1c 4137  df-addc 4379
This theorem is referenced by:  elsuci  4415  nnsucelr  4429  nndisjeq  4430  prepeano4  4452  ncfinraise  4482  ncfinlower  4484  tfinsuc  4499  oddfinex  4505  nnadjoin  4521  nnpweq  4524  sfindbl  4531  tfinnn  4535  peano4nc  6151  el2c  6192  nmembers1lem3  6271
  Copyright terms: Public domain W3C validator