Step | Hyp | Ref
| Expression |
1 | | eladdc 4399 |
. 2
⊢ (A ∈ (M +c 1c) ↔
∃b ∈ M ∃y ∈ 1c ((b ∩ y) =
∅ ∧
A = (b
∪ y))) |
2 | | snex 4112 |
. . . . . . 7
⊢ {x} ∈
V |
3 | | ineq2 3452 |
. . . . . . . . 9
⊢ (y = {x} →
(b ∩ y) = (b ∩
{x})) |
4 | 3 | eqeq1d 2361 |
. . . . . . . 8
⊢ (y = {x} →
((b ∩ y) = ∅ ↔
(b ∩ {x}) = ∅)) |
5 | | uneq2 3413 |
. . . . . . . . 9
⊢ (y = {x} →
(b ∪ y) = (b ∪
{x})) |
6 | 5 | eqeq2d 2364 |
. . . . . . . 8
⊢ (y = {x} →
(A = (b
∪ y) ↔ A = (b ∪
{x}))) |
7 | 4, 6 | anbi12d 691 |
. . . . . . 7
⊢ (y = {x} →
(((b ∩ y) = ∅ ∧ A = (b ∪ y))
↔ ((b ∩ {x}) = ∅ ∧ A = (b ∪ {x})))) |
8 | 2, 7 | ceqsexv 2895 |
. . . . . 6
⊢ (∃y(y = {x} ∧ ((b ∩
y) = ∅
∧ A =
(b ∪ y))) ↔ ((b
∩ {x}) = ∅ ∧ A = (b ∪
{x}))) |
9 | | disjsn 3787 |
. . . . . . . 8
⊢ ((b ∩ {x}) =
∅ ↔ ¬ x ∈ b) |
10 | | vex 2863 |
. . . . . . . . 9
⊢ x ∈
V |
11 | 10 | elcompl 3226 |
. . . . . . . 8
⊢ (x ∈ ∼ b ↔ ¬ x
∈ b) |
12 | 9, 11 | bitr4i 243 |
. . . . . . 7
⊢ ((b ∩ {x}) =
∅ ↔ x ∈ ∼ b) |
13 | 12 | anbi1i 676 |
. . . . . 6
⊢ (((b ∩ {x}) =
∅ ∧
A = (b
∪ {x})) ↔ (x ∈ ∼ b ∧ A = (b ∪
{x}))) |
14 | 8, 13 | bitri 240 |
. . . . 5
⊢ (∃y(y = {x} ∧ ((b ∩
y) = ∅
∧ A =
(b ∪ y))) ↔ (x
∈ ∼ b
∧ A =
(b ∪ {x}))) |
15 | 14 | exbii 1582 |
. . . 4
⊢ (∃x∃y(y = {x} ∧ ((b ∩
y) = ∅
∧ A =
(b ∪ y))) ↔ ∃x(x ∈ ∼ b ∧ A = (b ∪
{x}))) |
16 | | df-rex 2621 |
. . . . 5
⊢ (∃y ∈ 1c ((b ∩ y) =
∅ ∧
A = (b
∪ y)) ↔ ∃y(y ∈
1c ∧ ((b ∩ y) =
∅ ∧
A = (b
∪ y)))) |
17 | | el1c 4140 |
. . . . . . . . 9
⊢ (y ∈
1c ↔ ∃x y = {x}) |
18 | 17 | anbi1i 676 |
. . . . . . . 8
⊢ ((y ∈
1c ∧ ((b ∩ y) =
∅ ∧
A = (b
∪ y))) ↔ (∃x y = {x} ∧ ((b ∩
y) = ∅
∧ A =
(b ∪ y)))) |
19 | | 19.41v 1901 |
. . . . . . . 8
⊢ (∃x(y = {x} ∧ ((b ∩
y) = ∅
∧ A =
(b ∪ y))) ↔ (∃x y = {x} ∧ ((b ∩
y) = ∅
∧ A =
(b ∪ y)))) |
20 | 18, 19 | bitr4i 243 |
. . . . . . 7
⊢ ((y ∈
1c ∧ ((b ∩ y) =
∅ ∧
A = (b
∪ y))) ↔ ∃x(y = {x} ∧ ((b ∩
y) = ∅
∧ A =
(b ∪ y)))) |
21 | 20 | exbii 1582 |
. . . . . 6
⊢ (∃y(y ∈
1c ∧ ((b ∩ y) =
∅ ∧
A = (b
∪ y))) ↔ ∃y∃x(y = {x} ∧ ((b ∩
y) = ∅
∧ A =
(b ∪ y)))) |
22 | | excom 1741 |
. . . . . 6
⊢ (∃y∃x(y = {x} ∧ ((b ∩
y) = ∅
∧ A =
(b ∪ y))) ↔ ∃x∃y(y = {x} ∧ ((b ∩
y) = ∅
∧ A =
(b ∪ y)))) |
23 | 21, 22 | bitri 240 |
. . . . 5
⊢ (∃y(y ∈
1c ∧ ((b ∩ y) =
∅ ∧
A = (b
∪ y))) ↔ ∃x∃y(y = {x} ∧ ((b ∩
y) = ∅
∧ A =
(b ∪ y)))) |
24 | 16, 23 | bitri 240 |
. . . 4
⊢ (∃y ∈ 1c ((b ∩ y) =
∅ ∧
A = (b
∪ y)) ↔ ∃x∃y(y = {x} ∧ ((b ∩
y) = ∅
∧ A =
(b ∪ y)))) |
25 | | df-rex 2621 |
. . . 4
⊢ (∃x ∈ ∼ bA = (b ∪ {x})
↔ ∃x(x ∈ ∼ b ∧ A = (b ∪ {x}))) |
26 | 15, 24, 25 | 3bitr4i 268 |
. . 3
⊢ (∃y ∈ 1c ((b ∩ y) =
∅ ∧
A = (b
∪ y)) ↔ ∃x ∈ ∼ bA = (b ∪ {x})) |
27 | 26 | rexbii 2640 |
. 2
⊢ (∃b ∈ M ∃y ∈ 1c ((b ∩ y) =
∅ ∧
A = (b
∪ y)) ↔ ∃b ∈ M ∃x ∈ ∼ bA = (b ∪ {x})) |
28 | 1, 27 | bitri 240 |
1
⊢ (A ∈ (M +c 1c) ↔
∃b ∈ M ∃x ∈ ∼ bA = (b ∪ {x})) |