| New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > NFE Home > Th. List > moanimv | GIF version | ||
| Description: Introduction of a conjunct into "at most one" quantifier. (Contributed by NM, 23-Mar-1995.) |
| Ref | Expression |
|---|---|
| moanimv | ⊢ (∃*x(φ ∧ ψ) ↔ (φ → ∃*xψ)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nfv 1619 | . 2 ⊢ Ⅎxφ | |
| 2 | 1 | moanim 2260 | 1 ⊢ (∃*x(φ ∧ ψ) ↔ (φ → ∃*xψ)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 176 ∧ wa 358 ∃*wmo 2205 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 |
| This theorem depends on definitions: df-bi 177 df-or 359 df-an 360 df-tru 1319 df-ex 1542 df-nf 1545 df-sb 1649 df-eu 2208 df-mo 2209 |
| This theorem is referenced by: 2reuswap 3039 2reu5lem2 3043 funmo 5126 funsn 5148 funcnv 5157 fncnv 5159 fnres 5200 fnopabg 5206 fvopab3ig 5388 fnoprabg 5586 ovidi 5595 ovig 5598 |
| Copyright terms: Public domain | W3C validator |