NFE Home New Foundations Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  NFE Home  >  Th. List  >  moanimv GIF version

Theorem moanimv 2262
Description: Introduction of a conjunct into "at most one" quantifier. (Contributed by NM, 23-Mar-1995.)
Assertion
Ref Expression
moanimv (∃*x(φ ψ) ↔ (φ∃*xψ))
Distinct variable group:   φ,x
Allowed substitution hint:   ψ(x)

Proof of Theorem moanimv
StepHypRef Expression
1 nfv 1619 . 2 xφ
21moanim 2260 1 (∃*x(φ ψ) ↔ (φ∃*xψ))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 176   wa 358  ∃*wmo 2205
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1546  ax-5 1557  ax-17 1616  ax-9 1654  ax-8 1675  ax-6 1729  ax-7 1734  ax-11 1746  ax-12 1925
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-tru 1319  df-ex 1542  df-nf 1545  df-sb 1649  df-eu 2208  df-mo 2209
This theorem is referenced by:  2reuswap  3038  2reu5lem2  3042  funmo  5125  funsn  5147  funcnv  5156  fncnv  5158  fnres  5199  fnopabg  5205  fvopab3ig  5387  fnoprabg  5585  ovidi  5594  ovig  5597
  Copyright terms: Public domain W3C validator