New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > fnopabg | GIF version |
Description: Functionality and domain of an ordered-pair class abstraction. (Contributed by NM, 30-Jan-2004.) (Proof shortened by Mario Carneiro, 4-Dec-2016.) |
Ref | Expression |
---|---|
fnopabg.1 | ⊢ F = {〈x, y〉 ∣ (x ∈ A ∧ φ)} |
Ref | Expression |
---|---|
fnopabg | ⊢ (∀x ∈ A ∃!yφ ↔ F Fn A) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | moanimv 2262 | . . . . . 6 ⊢ (∃*y(x ∈ A ∧ φ) ↔ (x ∈ A → ∃*yφ)) | |
2 | 1 | albii 1566 | . . . . 5 ⊢ (∀x∃*y(x ∈ A ∧ φ) ↔ ∀x(x ∈ A → ∃*yφ)) |
3 | funopab 5140 | . . . . 5 ⊢ (Fun {〈x, y〉 ∣ (x ∈ A ∧ φ)} ↔ ∀x∃*y(x ∈ A ∧ φ)) | |
4 | df-ral 2620 | . . . . 5 ⊢ (∀x ∈ A ∃*yφ ↔ ∀x(x ∈ A → ∃*yφ)) | |
5 | 2, 3, 4 | 3bitr4ri 269 | . . . 4 ⊢ (∀x ∈ A ∃*yφ ↔ Fun {〈x, y〉 ∣ (x ∈ A ∧ φ)}) |
6 | dmopab3 4918 | . . . 4 ⊢ (∀x ∈ A ∃yφ ↔ dom {〈x, y〉 ∣ (x ∈ A ∧ φ)} = A) | |
7 | 5, 6 | anbi12i 678 | . . 3 ⊢ ((∀x ∈ A ∃*yφ ∧ ∀x ∈ A ∃yφ) ↔ (Fun {〈x, y〉 ∣ (x ∈ A ∧ φ)} ∧ dom {〈x, y〉 ∣ (x ∈ A ∧ φ)} = A)) |
8 | r19.26 2747 | . . 3 ⊢ (∀x ∈ A (∃*yφ ∧ ∃yφ) ↔ (∀x ∈ A ∃*yφ ∧ ∀x ∈ A ∃yφ)) | |
9 | df-fn 4791 | . . 3 ⊢ ({〈x, y〉 ∣ (x ∈ A ∧ φ)} Fn A ↔ (Fun {〈x, y〉 ∣ (x ∈ A ∧ φ)} ∧ dom {〈x, y〉 ∣ (x ∈ A ∧ φ)} = A)) | |
10 | 7, 8, 9 | 3bitr4i 268 | . 2 ⊢ (∀x ∈ A (∃*yφ ∧ ∃yφ) ↔ {〈x, y〉 ∣ (x ∈ A ∧ φ)} Fn A) |
11 | eu5 2242 | . . . 4 ⊢ (∃!yφ ↔ (∃yφ ∧ ∃*yφ)) | |
12 | ancom 437 | . . . 4 ⊢ ((∃yφ ∧ ∃*yφ) ↔ (∃*yφ ∧ ∃yφ)) | |
13 | 11, 12 | bitri 240 | . . 3 ⊢ (∃!yφ ↔ (∃*yφ ∧ ∃yφ)) |
14 | 13 | ralbii 2639 | . 2 ⊢ (∀x ∈ A ∃!yφ ↔ ∀x ∈ A (∃*yφ ∧ ∃yφ)) |
15 | fnopabg.1 | . . 3 ⊢ F = {〈x, y〉 ∣ (x ∈ A ∧ φ)} | |
16 | 15 | fneq1i 5179 | . 2 ⊢ (F Fn A ↔ {〈x, y〉 ∣ (x ∈ A ∧ φ)} Fn A) |
17 | 10, 14, 16 | 3bitr4i 268 | 1 ⊢ (∀x ∈ A ∃!yφ ↔ F Fn A) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 176 ∧ wa 358 ∀wal 1540 ∃wex 1541 = wceq 1642 ∈ wcel 1710 ∃!weu 2204 ∃*wmo 2205 ∀wral 2615 {copab 4623 dom cdm 4773 Fun wfun 4776 Fn wfn 4777 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-13 1712 ax-14 1714 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 ax-ext 2334 ax-nin 4079 ax-xp 4080 ax-cnv 4081 ax-1c 4082 ax-sset 4083 ax-si 4084 ax-ins2 4085 ax-ins3 4086 ax-typlower 4087 ax-sn 4088 |
This theorem depends on definitions: df-bi 177 df-or 359 df-an 360 df-3or 935 df-3an 936 df-nan 1288 df-tru 1319 df-ex 1542 df-nf 1545 df-sb 1649 df-eu 2208 df-mo 2209 df-clab 2340 df-cleq 2346 df-clel 2349 df-nfc 2479 df-ne 2519 df-ral 2620 df-rex 2621 df-reu 2622 df-rmo 2623 df-rab 2624 df-v 2862 df-sbc 3048 df-nin 3212 df-compl 3213 df-in 3214 df-un 3215 df-dif 3216 df-symdif 3217 df-ss 3260 df-pss 3262 df-nul 3552 df-if 3664 df-pw 3725 df-sn 3742 df-pr 3743 df-uni 3893 df-int 3928 df-opk 4059 df-1c 4137 df-pw1 4138 df-uni1 4139 df-xpk 4186 df-cnvk 4187 df-ins2k 4188 df-ins3k 4189 df-imak 4190 df-cok 4191 df-p6 4192 df-sik 4193 df-ssetk 4194 df-imagek 4195 df-idk 4196 df-iota 4340 df-0c 4378 df-addc 4379 df-nnc 4380 df-fin 4381 df-lefin 4441 df-ltfin 4442 df-ncfin 4443 df-tfin 4444 df-evenfin 4445 df-oddfin 4446 df-sfin 4447 df-spfin 4448 df-phi 4566 df-op 4567 df-proj1 4568 df-proj2 4569 df-opab 4624 df-br 4641 df-co 4727 df-ima 4728 df-id 4768 df-cnv 4786 df-rn 4787 df-dm 4788 df-fun 4790 df-fn 4791 |
This theorem is referenced by: fnopab2g 5207 fnopab 5208 |
Copyright terms: Public domain | W3C validator |