New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > iota2 | GIF version |
Description: The unique element such that φ. (Contributed by Jeff Madsen, 1-Jun-2011.) (Revised by Mario Carneiro, 23-Dec-2016.) |
Ref | Expression |
---|---|
iota2.1 | ⊢ (x = A → (φ ↔ ψ)) |
Ref | Expression |
---|---|
iota2 | ⊢ ((A ∈ B ∧ ∃!xφ) → (ψ ↔ (℩xφ) = A)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elex 2868 | . 2 ⊢ (A ∈ B → A ∈ V) | |
2 | simpl 443 | . . 3 ⊢ ((A ∈ V ∧ ∃!xφ) → A ∈ V) | |
3 | simpr 447 | . . 3 ⊢ ((A ∈ V ∧ ∃!xφ) → ∃!xφ) | |
4 | iota2.1 | . . . 4 ⊢ (x = A → (φ ↔ ψ)) | |
5 | 4 | adantl 452 | . . 3 ⊢ (((A ∈ V ∧ ∃!xφ) ∧ x = A) → (φ ↔ ψ)) |
6 | nfv 1619 | . . . 4 ⊢ Ⅎx A ∈ V | |
7 | nfeu1 2214 | . . . 4 ⊢ Ⅎx∃!xφ | |
8 | 6, 7 | nfan 1824 | . . 3 ⊢ Ⅎx(A ∈ V ∧ ∃!xφ) |
9 | nfvd 1620 | . . 3 ⊢ ((A ∈ V ∧ ∃!xφ) → Ⅎxψ) | |
10 | nfcvd 2491 | . . 3 ⊢ ((A ∈ V ∧ ∃!xφ) → ℲxA) | |
11 | 2, 3, 5, 8, 9, 10 | iota2df 4366 | . 2 ⊢ ((A ∈ V ∧ ∃!xφ) → (ψ ↔ (℩xφ) = A)) |
12 | 1, 11 | sylan 457 | 1 ⊢ ((A ∈ B ∧ ∃!xφ) → (ψ ↔ (℩xφ) = A)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 176 ∧ wa 358 = wceq 1642 ∈ wcel 1710 ∃!weu 2204 Vcvv 2860 ℩cio 4338 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 ax-ext 2334 |
This theorem depends on definitions: df-bi 177 df-or 359 df-an 360 df-3an 936 df-nan 1288 df-tru 1319 df-ex 1542 df-nf 1545 df-sb 1649 df-eu 2208 df-clab 2340 df-cleq 2346 df-clel 2349 df-nfc 2479 df-ral 2620 df-rex 2621 df-v 2862 df-sbc 3048 df-nin 3212 df-compl 3213 df-un 3215 df-sn 3742 df-pr 3743 df-uni 3893 df-iota 4340 |
This theorem is referenced by: reiota2 4369 tz6.12-1 5345 |
Copyright terms: Public domain | W3C validator |