NFE Home New Foundations Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  NFE Home  >  Th. List  >  iota2 GIF version

Theorem iota2 4368
Description: The unique element such that φ. (Contributed by Jeff Madsen, 1-Jun-2011.) (Revised by Mario Carneiro, 23-Dec-2016.)
Hypothesis
Ref Expression
iota2.1 (x = A → (φψ))
Assertion
Ref Expression
iota2 ((A B ∃!xφ) → (ψ ↔ (℩xφ) = A))
Distinct variable groups:   x,A   ψ,x
Allowed substitution hints:   φ(x)   B(x)

Proof of Theorem iota2
StepHypRef Expression
1 elex 2868 . 2 (A BA V)
2 simpl 443 . . 3 ((A V ∃!xφ) → A V)
3 simpr 447 . . 3 ((A V ∃!xφ) → ∃!xφ)
4 iota2.1 . . . 4 (x = A → (φψ))
54adantl 452 . . 3 (((A V ∃!xφ) x = A) → (φψ))
6 nfv 1619 . . . 4 x A V
7 nfeu1 2214 . . . 4 x∃!xφ
86, 7nfan 1824 . . 3 x(A V ∃!xφ)
9 nfvd 1620 . . 3 ((A V ∃!xφ) → Ⅎxψ)
10 nfcvd 2491 . . 3 ((A V ∃!xφ) → xA)
112, 3, 5, 8, 9, 10iota2df 4366 . 2 ((A V ∃!xφ) → (ψ ↔ (℩xφ) = A))
121, 11sylan 457 1 ((A B ∃!xφ) → (ψ ↔ (℩xφ) = A))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 176   wa 358   = wceq 1642   wcel 1710  ∃!weu 2204  Vcvv 2860  cio 4338
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1546  ax-5 1557  ax-17 1616  ax-9 1654  ax-8 1675  ax-6 1729  ax-7 1734  ax-11 1746  ax-12 1925  ax-ext 2334
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3an 936  df-nan 1288  df-tru 1319  df-ex 1542  df-nf 1545  df-sb 1649  df-eu 2208  df-clab 2340  df-cleq 2346  df-clel 2349  df-nfc 2479  df-ral 2620  df-rex 2621  df-v 2862  df-sbc 3048  df-nin 3212  df-compl 3213  df-un 3215  df-sn 3742  df-pr 3743  df-uni 3893  df-iota 4340
This theorem is referenced by:  reiota2  4369  tz6.12-1  5345
  Copyright terms: Public domain W3C validator