![]() |
New Foundations Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > NFE Home > Th. List > pweq | GIF version |
Description: Equality theorem for power class. (Contributed by NM, 5-Aug-1993.) |
Ref | Expression |
---|---|
pweq | ⊢ (A = B → ℘A = ℘B) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sseq2 3293 | . . 3 ⊢ (A = B → (x ⊆ A ↔ x ⊆ B)) | |
2 | 1 | abbidv 2467 | . 2 ⊢ (A = B → {x ∣ x ⊆ A} = {x ∣ x ⊆ B}) |
3 | df-pw 3724 | . 2 ⊢ ℘A = {x ∣ x ⊆ A} | |
4 | df-pw 3724 | . 2 ⊢ ℘B = {x ∣ x ⊆ B} | |
5 | 2, 3, 4 | 3eqtr4g 2410 | 1 ⊢ (A = B → ℘A = ℘B) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1642 {cab 2339 ⊆ wss 3257 ℘cpw 3722 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-3 7 ax-mp 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 ax-ext 2334 |
This theorem depends on definitions: df-bi 177 df-or 359 df-an 360 df-nan 1288 df-tru 1319 df-ex 1542 df-nf 1545 df-sb 1649 df-clab 2340 df-cleq 2346 df-clel 2349 df-nfc 2478 df-v 2861 df-nin 3211 df-compl 3212 df-in 3213 df-ss 3259 df-pw 3724 |
This theorem is referenced by: pweqi 3726 pweqd 3727 pw1eq 4143 nnpweq 4523 sfin01 4528 sfindbl 4530 1cvsfin 4542 vfinspsslem1 4550 enpw 6087 |
Copyright terms: Public domain | W3C validator |