NFE Home New Foundations Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  NFE Home  >  Th. List  >  pweq GIF version

Theorem pweq 3726
Description: Equality theorem for power class. (Contributed by NM, 5-Aug-1993.)
Assertion
Ref Expression
pweq (A = BA = B)

Proof of Theorem pweq
Dummy variable x is distinct from all other variables.
StepHypRef Expression
1 sseq2 3294 . . 3 (A = B → (x Ax B))
21abbidv 2468 . 2 (A = B → {x x A} = {x x B})
3 df-pw 3725 . 2 A = {x x A}
4 df-pw 3725 . 2 B = {x x B}
52, 3, 43eqtr4g 2410 1 (A = BA = B)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1642  {cab 2339   wss 3258  cpw 3723
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1546  ax-5 1557  ax-17 1616  ax-9 1654  ax-8 1675  ax-6 1729  ax-7 1734  ax-11 1746  ax-12 1925  ax-ext 2334
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-nan 1288  df-tru 1319  df-ex 1542  df-nf 1545  df-sb 1649  df-clab 2340  df-cleq 2346  df-clel 2349  df-nfc 2479  df-v 2862  df-nin 3212  df-compl 3213  df-in 3214  df-ss 3260  df-pw 3725
This theorem is referenced by:  pweqi  3727  pweqd  3728  pw1eq  4144  nnpweq  4524  sfin01  4529  sfindbl  4531  1cvsfin  4543  vfinspsslem1  4551  enpw  6088
  Copyright terms: Public domain W3C validator