New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > pw1eq | GIF version |
Description: Equality theorem for unit power class. (Contributed by SF, 12-Jan-2015.) |
Ref | Expression |
---|---|
pw1eq | ⊢ (A = B → ℘1A = ℘1B) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pweq 3726 | . . 3 ⊢ (A = B → ℘A = ℘B) | |
2 | 1 | ineq1d 3457 | . 2 ⊢ (A = B → (℘A ∩ 1c) = (℘B ∩ 1c)) |
3 | df-pw1 4138 | . 2 ⊢ ℘1A = (℘A ∩ 1c) | |
4 | df-pw1 4138 | . 2 ⊢ ℘1B = (℘B ∩ 1c) | |
5 | 2, 3, 4 | 3eqtr4g 2410 | 1 ⊢ (A = B → ℘1A = ℘1B) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1642 ∩ cin 3209 ℘cpw 3723 1cc1c 4135 ℘1cpw1 4136 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 ax-ext 2334 |
This theorem depends on definitions: df-bi 177 df-or 359 df-an 360 df-nan 1288 df-tru 1319 df-ex 1542 df-nf 1545 df-sb 1649 df-clab 2340 df-cleq 2346 df-clel 2349 df-nfc 2479 df-v 2862 df-nin 3212 df-compl 3213 df-in 3214 df-ss 3260 df-pw 3725 df-pw1 4138 |
This theorem is referenced by: pw10b 4167 pw1equn 4332 pw1eqadj 4333 sspw1 4336 sspw12 4337 addceq2 4385 ncfinraise 4482 ncfinlower 4484 nnpw1ex 4485 tfindi 4497 tfinsuc 4499 sfin01 4529 sfindbl 4531 1cvsfin 4543 vfinspsslem1 4551 rnsi 5522 pw1fnval 5852 pw1fnf1o 5856 enpw1 6063 ncpw1c 6155 ncspw1eu 6160 pw1eltc 6163 tcdi 6165 ce0nnul 6178 ce0nnuli 6179 ce0addcnnul 6180 cenc 6182 ce0nulnc 6185 ce2 6193 elcan 6330 |
Copyright terms: Public domain | W3C validator |