New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > nclennlem1 | GIF version |
Description: Lemma for nclenn 6249. Set up stratification for induction. (Contributed by SF, 19-Mar-2015.) |
Ref | Expression |
---|---|
nclennlem1 | ⊢ {x ∣ ∀n ∈ NC (n ≤c x → n ∈ Nn )} ∈ V |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | vex 2862 | . . . . 5 ⊢ x ∈ V | |
2 | 1 | elcompl 3225 | . . . 4 ⊢ (x ∈ ∼ (( ≤c ↾ ∼ Nn ) “ NC ) ↔ ¬ x ∈ (( ≤c ↾ ∼ Nn ) “ NC )) |
3 | elima 4754 | . . . . . 6 ⊢ (x ∈ (( ≤c ↾ ∼ Nn ) “ NC ) ↔ ∃n ∈ NC n( ≤c ↾ ∼ Nn )x) | |
4 | brres 4949 | . . . . . . . 8 ⊢ (n( ≤c ↾ ∼ Nn )x ↔ (n ≤c x ∧ n ∈ ∼ Nn )) | |
5 | vex 2862 | . . . . . . . . . 10 ⊢ n ∈ V | |
6 | 5 | elcompl 3225 | . . . . . . . . 9 ⊢ (n ∈ ∼ Nn ↔ ¬ n ∈ Nn ) |
7 | 6 | anbi2i 675 | . . . . . . . 8 ⊢ ((n ≤c x ∧ n ∈ ∼ Nn ) ↔ (n ≤c x ∧ ¬ n ∈ Nn )) |
8 | 4, 7 | bitri 240 | . . . . . . 7 ⊢ (n( ≤c ↾ ∼ Nn )x ↔ (n ≤c x ∧ ¬ n ∈ Nn )) |
9 | 8 | rexbii 2639 | . . . . . 6 ⊢ (∃n ∈ NC n( ≤c ↾ ∼ Nn )x ↔ ∃n ∈ NC (n ≤c x ∧ ¬ n ∈ Nn )) |
10 | rexanali 2660 | . . . . . 6 ⊢ (∃n ∈ NC (n ≤c x ∧ ¬ n ∈ Nn ) ↔ ¬ ∀n ∈ NC (n ≤c x → n ∈ Nn )) | |
11 | 3, 9, 10 | 3bitrri 263 | . . . . 5 ⊢ (¬ ∀n ∈ NC (n ≤c x → n ∈ Nn ) ↔ x ∈ (( ≤c ↾ ∼ Nn ) “ NC )) |
12 | 11 | con1bii 321 | . . . 4 ⊢ (¬ x ∈ (( ≤c ↾ ∼ Nn ) “ NC ) ↔ ∀n ∈ NC (n ≤c x → n ∈ Nn )) |
13 | 2, 12 | bitri 240 | . . 3 ⊢ (x ∈ ∼ (( ≤c ↾ ∼ Nn ) “ NC ) ↔ ∀n ∈ NC (n ≤c x → n ∈ Nn )) |
14 | 13 | abbi2i 2464 | . 2 ⊢ ∼ (( ≤c ↾ ∼ Nn ) “ NC ) = {x ∣ ∀n ∈ NC (n ≤c x → n ∈ Nn )} |
15 | lecex 6115 | . . . . 5 ⊢ ≤c ∈ V | |
16 | nncex 4396 | . . . . . 6 ⊢ Nn ∈ V | |
17 | 16 | complex 4104 | . . . . 5 ⊢ ∼ Nn ∈ V |
18 | 15, 17 | resex 5117 | . . . 4 ⊢ ( ≤c ↾ ∼ Nn ) ∈ V |
19 | ncsex 6111 | . . . 4 ⊢ NC ∈ V | |
20 | 18, 19 | imaex 4747 | . . 3 ⊢ (( ≤c ↾ ∼ Nn ) “ NC ) ∈ V |
21 | 20 | complex 4104 | . 2 ⊢ ∼ (( ≤c ↾ ∼ Nn ) “ NC ) ∈ V |
22 | 14, 21 | eqeltrri 2424 | 1 ⊢ {x ∣ ∀n ∈ NC (n ≤c x → n ∈ Nn )} ∈ V |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 358 ∈ wcel 1710 {cab 2339 ∀wral 2614 ∃wrex 2615 Vcvv 2859 ∼ ccompl 3205 Nn cnnc 4373 class class class wbr 4639 “ cima 4722 ↾ cres 4774 NC cncs 6088 ≤c clec 6089 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-13 1712 ax-14 1714 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 ax-ext 2334 ax-nin 4078 ax-xp 4079 ax-cnv 4080 ax-1c 4081 ax-sset 4082 ax-si 4083 ax-ins2 4084 ax-ins3 4085 ax-typlower 4086 ax-sn 4087 |
This theorem depends on definitions: df-bi 177 df-or 359 df-an 360 df-3or 935 df-3an 936 df-nan 1288 df-tru 1319 df-ex 1542 df-nf 1545 df-sb 1649 df-eu 2208 df-mo 2209 df-clab 2340 df-cleq 2346 df-clel 2349 df-nfc 2478 df-ne 2518 df-ral 2619 df-rex 2620 df-reu 2621 df-rmo 2622 df-rab 2623 df-v 2861 df-sbc 3047 df-nin 3211 df-compl 3212 df-in 3213 df-un 3214 df-dif 3215 df-symdif 3216 df-ss 3259 df-pss 3261 df-nul 3551 df-if 3663 df-pw 3724 df-sn 3741 df-pr 3742 df-uni 3892 df-int 3927 df-opk 4058 df-1c 4136 df-pw1 4137 df-uni1 4138 df-xpk 4185 df-cnvk 4186 df-ins2k 4187 df-ins3k 4188 df-imak 4189 df-cok 4190 df-p6 4191 df-sik 4192 df-ssetk 4193 df-imagek 4194 df-idk 4195 df-iota 4339 df-0c 4377 df-addc 4378 df-nnc 4379 df-fin 4380 df-lefin 4440 df-ltfin 4441 df-ncfin 4442 df-tfin 4443 df-evenfin 4444 df-oddfin 4445 df-sfin 4446 df-spfin 4447 df-phi 4565 df-op 4566 df-proj1 4567 df-proj2 4568 df-opab 4623 df-br 4640 df-1st 4723 df-swap 4724 df-sset 4725 df-co 4726 df-ima 4727 df-si 4728 df-id 4767 df-xp 4784 df-cnv 4785 df-rn 4786 df-dm 4787 df-res 4788 df-fun 4789 df-fn 4790 df-f 4791 df-f1 4792 df-fo 4793 df-f1o 4794 df-2nd 4797 df-txp 5736 df-ins2 5750 df-ins3 5752 df-image 5754 df-ins4 5756 df-si3 5758 df-funs 5760 df-fns 5762 df-ec 5947 df-qs 5951 df-en 6029 df-ncs 6098 df-lec 6099 |
This theorem is referenced by: nclenn 6249 |
Copyright terms: Public domain | W3C validator |