New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > nclennlem1 | GIF version |
Description: Lemma for nclenn 6250. Set up stratification for induction. (Contributed by SF, 19-Mar-2015.) |
Ref | Expression |
---|---|
nclennlem1 | ⊢ {x ∣ ∀n ∈ NC (n ≤c x → n ∈ Nn )} ∈ V |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | vex 2863 | . . . . 5 ⊢ x ∈ V | |
2 | 1 | elcompl 3226 | . . . 4 ⊢ (x ∈ ∼ (( ≤c ↾ ∼ Nn ) “ NC ) ↔ ¬ x ∈ (( ≤c ↾ ∼ Nn ) “ NC )) |
3 | elima 4755 | . . . . . 6 ⊢ (x ∈ (( ≤c ↾ ∼ Nn ) “ NC ) ↔ ∃n ∈ NC n( ≤c ↾ ∼ Nn )x) | |
4 | brres 4950 | . . . . . . . 8 ⊢ (n( ≤c ↾ ∼ Nn )x ↔ (n ≤c x ∧ n ∈ ∼ Nn )) | |
5 | vex 2863 | . . . . . . . . . 10 ⊢ n ∈ V | |
6 | 5 | elcompl 3226 | . . . . . . . . 9 ⊢ (n ∈ ∼ Nn ↔ ¬ n ∈ Nn ) |
7 | 6 | anbi2i 675 | . . . . . . . 8 ⊢ ((n ≤c x ∧ n ∈ ∼ Nn ) ↔ (n ≤c x ∧ ¬ n ∈ Nn )) |
8 | 4, 7 | bitri 240 | . . . . . . 7 ⊢ (n( ≤c ↾ ∼ Nn )x ↔ (n ≤c x ∧ ¬ n ∈ Nn )) |
9 | 8 | rexbii 2640 | . . . . . 6 ⊢ (∃n ∈ NC n( ≤c ↾ ∼ Nn )x ↔ ∃n ∈ NC (n ≤c x ∧ ¬ n ∈ Nn )) |
10 | rexanali 2661 | . . . . . 6 ⊢ (∃n ∈ NC (n ≤c x ∧ ¬ n ∈ Nn ) ↔ ¬ ∀n ∈ NC (n ≤c x → n ∈ Nn )) | |
11 | 3, 9, 10 | 3bitrri 263 | . . . . 5 ⊢ (¬ ∀n ∈ NC (n ≤c x → n ∈ Nn ) ↔ x ∈ (( ≤c ↾ ∼ Nn ) “ NC )) |
12 | 11 | con1bii 321 | . . . 4 ⊢ (¬ x ∈ (( ≤c ↾ ∼ Nn ) “ NC ) ↔ ∀n ∈ NC (n ≤c x → n ∈ Nn )) |
13 | 2, 12 | bitri 240 | . . 3 ⊢ (x ∈ ∼ (( ≤c ↾ ∼ Nn ) “ NC ) ↔ ∀n ∈ NC (n ≤c x → n ∈ Nn )) |
14 | 13 | abbi2i 2465 | . 2 ⊢ ∼ (( ≤c ↾ ∼ Nn ) “ NC ) = {x ∣ ∀n ∈ NC (n ≤c x → n ∈ Nn )} |
15 | lecex 6116 | . . . . 5 ⊢ ≤c ∈ V | |
16 | nncex 4397 | . . . . . 6 ⊢ Nn ∈ V | |
17 | 16 | complex 4105 | . . . . 5 ⊢ ∼ Nn ∈ V |
18 | 15, 17 | resex 5118 | . . . 4 ⊢ ( ≤c ↾ ∼ Nn ) ∈ V |
19 | ncsex 6112 | . . . 4 ⊢ NC ∈ V | |
20 | 18, 19 | imaex 4748 | . . 3 ⊢ (( ≤c ↾ ∼ Nn ) “ NC ) ∈ V |
21 | 20 | complex 4105 | . 2 ⊢ ∼ (( ≤c ↾ ∼ Nn ) “ NC ) ∈ V |
22 | 14, 21 | eqeltrri 2424 | 1 ⊢ {x ∣ ∀n ∈ NC (n ≤c x → n ∈ Nn )} ∈ V |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 358 ∈ wcel 1710 {cab 2339 ∀wral 2615 ∃wrex 2616 Vcvv 2860 ∼ ccompl 3206 Nn cnnc 4374 class class class wbr 4640 “ cima 4723 ↾ cres 4775 NC cncs 6089 ≤c clec 6090 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-13 1712 ax-14 1714 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 ax-ext 2334 ax-nin 4079 ax-xp 4080 ax-cnv 4081 ax-1c 4082 ax-sset 4083 ax-si 4084 ax-ins2 4085 ax-ins3 4086 ax-typlower 4087 ax-sn 4088 |
This theorem depends on definitions: df-bi 177 df-or 359 df-an 360 df-3or 935 df-3an 936 df-nan 1288 df-tru 1319 df-ex 1542 df-nf 1545 df-sb 1649 df-eu 2208 df-mo 2209 df-clab 2340 df-cleq 2346 df-clel 2349 df-nfc 2479 df-ne 2519 df-ral 2620 df-rex 2621 df-reu 2622 df-rmo 2623 df-rab 2624 df-v 2862 df-sbc 3048 df-nin 3212 df-compl 3213 df-in 3214 df-un 3215 df-dif 3216 df-symdif 3217 df-ss 3260 df-pss 3262 df-nul 3552 df-if 3664 df-pw 3725 df-sn 3742 df-pr 3743 df-uni 3893 df-int 3928 df-opk 4059 df-1c 4137 df-pw1 4138 df-uni1 4139 df-xpk 4186 df-cnvk 4187 df-ins2k 4188 df-ins3k 4189 df-imak 4190 df-cok 4191 df-p6 4192 df-sik 4193 df-ssetk 4194 df-imagek 4195 df-idk 4196 df-iota 4340 df-0c 4378 df-addc 4379 df-nnc 4380 df-fin 4381 df-lefin 4441 df-ltfin 4442 df-ncfin 4443 df-tfin 4444 df-evenfin 4445 df-oddfin 4446 df-sfin 4447 df-spfin 4448 df-phi 4566 df-op 4567 df-proj1 4568 df-proj2 4569 df-opab 4624 df-br 4641 df-1st 4724 df-swap 4725 df-sset 4726 df-co 4727 df-ima 4728 df-si 4729 df-id 4768 df-xp 4785 df-cnv 4786 df-rn 4787 df-dm 4788 df-res 4789 df-fun 4790 df-fn 4791 df-f 4792 df-f1 4793 df-fo 4794 df-f1o 4795 df-2nd 4798 df-txp 5737 df-ins2 5751 df-ins3 5753 df-image 5755 df-ins4 5757 df-si3 5759 df-funs 5761 df-fns 5763 df-ec 5948 df-qs 5952 df-en 6030 df-ncs 6099 df-lec 6100 |
This theorem is referenced by: nclenn 6250 |
Copyright terms: Public domain | W3C validator |