| Step | Hyp | Ref
| Expression |
| 1 | | df-sym 5909 |
. . 3
⊢ Sym = {〈r, a〉 ∣ ∀x ∈ a ∀y ∈ a (xry → yrx)} |
| 2 | | vex 2863 |
. . . . . . 7
⊢ r ∈
V |
| 3 | | vex 2863 |
. . . . . . 7
⊢ a ∈
V |
| 4 | 2, 3 | opex 4589 |
. . . . . 6
⊢ 〈r, a〉 ∈ V |
| 5 | 4 | elcompl 3226 |
. . . . 5
⊢ (〈r, a〉 ∈ ∼ (( Ins2 S ∩ (( Ins2 Ins2 S ∩ Ins4 ((( Ins4 SI3 Swap
∩ Ins2 Ins2 S ) “
1c) ∖ (( Ins4 SI3
I ∩ Ins2 Ins2
S ) “ 1c))) “
1c)) “ 1c) ↔ ¬ 〈r, a〉 ∈ (( Ins2 S ∩ (( Ins2 Ins2 S ∩ Ins4 ((( Ins4 SI3 Swap
∩ Ins2 Ins2 S ) “
1c) ∖ (( Ins4 SI3
I ∩ Ins2 Ins2
S ) “ 1c))) “
1c)) “ 1c)) |
| 6 | | elin 3220 |
. . . . . . . . . 10
⊢ (〈{x}, 〈r, a〉〉 ∈ ( Ins2 S ∩ (( Ins2 Ins2 S ∩ Ins4 ((( Ins4 SI3
Swap ∩ Ins2
Ins2 S ) “
1c) ∖ (( Ins4 SI3
I ∩ Ins2 Ins2
S ) “ 1c))) “
1c)) ↔ (〈{x}, 〈r, a〉〉 ∈ Ins2 S ∧ 〈{x}, 〈r, a〉〉 ∈ (( Ins2 Ins2 S ∩ Ins4 ((( Ins4 SI3
Swap ∩ Ins2
Ins2 S ) “
1c) ∖ (( Ins4 SI3
I ∩ Ins2 Ins2
S ) “ 1c))) “
1c))) |
| 7 | 2 | otelins2 5792 |
. . . . . . . . . . . 12
⊢ (〈{x}, 〈r, a〉〉 ∈ Ins2 S ↔ 〈{x}, a〉 ∈ S
) |
| 8 | | vex 2863 |
. . . . . . . . . . . . 13
⊢ x ∈
V |
| 9 | 8, 3 | opelssetsn 4761 |
. . . . . . . . . . . 12
⊢ (〈{x}, a〉 ∈ S ↔ x ∈ a) |
| 10 | 7, 9 | bitri 240 |
. . . . . . . . . . 11
⊢ (〈{x}, 〈r, a〉〉 ∈ Ins2 S ↔ x ∈ a) |
| 11 | | elin 3220 |
. . . . . . . . . . . . . . 15
⊢ (〈{y}, 〈{x}, 〈r, a〉〉〉 ∈ ( Ins2 Ins2 S ∩ Ins4 ((( Ins4 SI3 Swap
∩ Ins2 Ins2 S ) “
1c) ∖ (( Ins4 SI3
I ∩ Ins2 Ins2
S ) “ 1c))) ↔ (〈{y}, 〈{x}, 〈r, a〉〉〉 ∈ Ins2 Ins2 S ∧ 〈{y}, 〈{x}, 〈r, a〉〉〉 ∈ Ins4 ((( Ins4 SI3 Swap
∩ Ins2 Ins2 S ) “
1c) ∖ (( Ins4 SI3
I ∩ Ins2 Ins2
S ) “
1c)))) |
| 12 | | snex 4112 |
. . . . . . . . . . . . . . . . . 18
⊢ {x} ∈
V |
| 13 | 12 | otelins2 5792 |
. . . . . . . . . . . . . . . . 17
⊢ (〈{y}, 〈{x}, 〈r, a〉〉〉 ∈ Ins2 Ins2 S ↔ 〈{y}, 〈r, a〉〉 ∈ Ins2 S ) |
| 14 | 2 | otelins2 5792 |
. . . . . . . . . . . . . . . . 17
⊢ (〈{y}, 〈r, a〉〉 ∈ Ins2 S ↔ 〈{y}, a〉 ∈ S
) |
| 15 | | vex 2863 |
. . . . . . . . . . . . . . . . . 18
⊢ y ∈
V |
| 16 | 15, 3 | opelssetsn 4761 |
. . . . . . . . . . . . . . . . 17
⊢ (〈{y}, a〉 ∈ S ↔ y ∈ a) |
| 17 | 13, 14, 16 | 3bitri 262 |
. . . . . . . . . . . . . . . 16
⊢ (〈{y}, 〈{x}, 〈r, a〉〉〉 ∈ Ins2 Ins2 S ↔ y ∈ a) |
| 18 | 3 | oqelins4 5795 |
. . . . . . . . . . . . . . . . 17
⊢ (〈{y}, 〈{x}, 〈r, a〉〉〉 ∈ Ins4 ((( Ins4 SI3
Swap ∩ Ins2
Ins2 S ) “
1c) ∖ (( Ins4 SI3
I ∩ Ins2 Ins2
S ) “ 1c)) ↔ 〈{y}, 〈{x}, r〉〉 ∈ ((( Ins4 SI3
Swap ∩ Ins2
Ins2 S ) “
1c) ∖ (( Ins4 SI3
I ∩ Ins2 Ins2
S ) “
1c))) |
| 19 | | eldif 3222 |
. . . . . . . . . . . . . . . . 17
⊢ (〈{y}, 〈{x}, r〉〉 ∈ ((( Ins4 SI3
Swap ∩ Ins2
Ins2 S ) “
1c) ∖ (( Ins4 SI3
I ∩ Ins2 Ins2
S ) “ 1c)) ↔ (〈{y}, 〈{x}, r〉〉 ∈ (( Ins4 SI3
Swap ∩ Ins2
Ins2 S ) “
1c) ∧ ¬ 〈{y}, 〈{x}, r〉〉 ∈ (( Ins4 SI3
I ∩ Ins2 Ins2
S ) “
1c))) |
| 20 | | elin 3220 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (〈{p}, 〈{y}, 〈{x}, r〉〉〉 ∈ ( Ins4 SI3 Swap
∩ Ins2 Ins2 S ) ↔ (〈{p}, 〈{y}, 〈{x}, r〉〉〉 ∈ Ins4 SI3 Swap
∧ 〈{p}, 〈{y}, 〈{x}, r〉〉〉 ∈ Ins2 Ins2 S )) |
| 21 | 2 | oqelins4 5795 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (〈{p}, 〈{y}, 〈{x}, r〉〉〉 ∈ Ins4 SI3 Swap
↔ 〈{p}, 〈{y}, {x}〉〉 ∈ SI3 Swap
) |
| 22 | | vex 2863 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ p ∈
V |
| 23 | 22, 15, 8 | otsnelsi3 5806 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (〈{p}, 〈{y}, {x}〉〉 ∈ SI3 Swap
↔ 〈p, 〈y, x〉〉 ∈ Swap
) |
| 24 | | df-br 4641 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (p Swap 〈y, x〉 ↔ 〈p, 〈y, x〉〉 ∈ Swap ) |
| 25 | 15, 8 | brswap2 4861 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (p Swap 〈y, x〉 ↔ p = 〈x, y〉) |
| 26 | 23, 24, 25 | 3bitr2i 264 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (〈{p}, 〈{y}, {x}〉〉 ∈ SI3 Swap
↔ p = 〈x, y〉) |
| 27 | 21, 26 | bitri 240 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (〈{p}, 〈{y}, 〈{x}, r〉〉〉 ∈ Ins4 SI3 Swap
↔ p = 〈x, y〉) |
| 28 | | snex 4112 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ {y} ∈
V |
| 29 | 28 | otelins2 5792 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (〈{p}, 〈{y}, 〈{x}, r〉〉〉 ∈ Ins2 Ins2 S ↔ 〈{p}, 〈{x}, r〉〉 ∈ Ins2 S ) |
| 30 | 12 | otelins2 5792 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (〈{p}, 〈{x}, r〉〉 ∈ Ins2 S ↔ 〈{p}, r〉 ∈ S
) |
| 31 | 22, 2 | opelssetsn 4761 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (〈{p}, r〉 ∈ S ↔ p ∈ r) |
| 32 | 29, 30, 31 | 3bitri 262 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (〈{p}, 〈{y}, 〈{x}, r〉〉〉 ∈ Ins2 Ins2 S ↔ p ∈ r) |
| 33 | 27, 32 | anbi12i 678 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((〈{p}, 〈{y}, 〈{x}, r〉〉〉 ∈ Ins4 SI3 Swap
∧ 〈{p}, 〈{y}, 〈{x}, r〉〉〉 ∈ Ins2 Ins2 S ) ↔ (p = 〈x, y〉 ∧ p ∈ r)) |
| 34 | 20, 33 | bitri 240 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (〈{p}, 〈{y}, 〈{x}, r〉〉〉 ∈ ( Ins4 SI3 Swap
∩ Ins2 Ins2 S ) ↔ (p = 〈x, y〉 ∧ p ∈ r)) |
| 35 | 34 | exbii 1582 |
. . . . . . . . . . . . . . . . . . 19
⊢ (∃p〈{p}, 〈{y}, 〈{x}, r〉〉〉 ∈ ( Ins4 SI3 Swap
∩ Ins2 Ins2 S ) ↔ ∃p(p = 〈x, y〉 ∧ p ∈ r)) |
| 36 | | elima1c 4948 |
. . . . . . . . . . . . . . . . . . 19
⊢ (〈{y}, 〈{x}, r〉〉 ∈ (( Ins4 SI3
Swap ∩ Ins2
Ins2 S ) “
1c) ↔ ∃p〈{p}, 〈{y}, 〈{x}, r〉〉〉 ∈ ( Ins4 SI3
Swap ∩ Ins2
Ins2 S
)) |
| 37 | | df-br 4641 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (xry ↔ 〈x, y〉 ∈ r) |
| 38 | | df-clel 2349 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (〈x, y〉 ∈ r ↔
∃p(p = 〈x, y〉 ∧ p ∈ r)) |
| 39 | 37, 38 | bitri 240 |
. . . . . . . . . . . . . . . . . . 19
⊢ (xry ↔ ∃p(p = 〈x, y〉 ∧ p ∈ r)) |
| 40 | 35, 36, 39 | 3bitr4i 268 |
. . . . . . . . . . . . . . . . . 18
⊢ (〈{y}, 〈{x}, r〉〉 ∈ (( Ins4 SI3
Swap ∩ Ins2
Ins2 S ) “
1c) ↔ xry) |
| 41 | | elin 3220 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (〈{p}, 〈{y}, 〈{x}, r〉〉〉 ∈ ( Ins4 SI3 I ∩ Ins2 Ins2 S ) ↔ (〈{p}, 〈{y}, 〈{x}, r〉〉〉 ∈ Ins4 SI3 I ∧ 〈{p}, 〈{y}, 〈{x}, r〉〉〉 ∈ Ins2 Ins2 S )) |
| 42 | 2 | oqelins4 5795 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (〈{p}, 〈{y}, 〈{x}, r〉〉〉 ∈ Ins4 SI3 I ↔ 〈{p}, 〈{y}, {x}〉〉 ∈ SI3 I ) |
| 43 | 22, 15, 8 | otsnelsi3 5806 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (〈{p}, 〈{y}, {x}〉〉 ∈ SI3 I ↔ 〈p, 〈y, x〉〉 ∈ I
) |
| 44 | | df-br 4641 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (p I 〈y, x〉 ↔ 〈p, 〈y, x〉〉 ∈ I
) |
| 45 | 15, 8 | opex 4589 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ 〈y, x〉 ∈ V |
| 46 | 45 | ideq 4871 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (p I 〈y, x〉 ↔ p =
〈y,
x〉) |
| 47 | 43, 44, 46 | 3bitr2i 264 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (〈{p}, 〈{y}, {x}〉〉 ∈ SI3 I ↔ p = 〈y, x〉) |
| 48 | 42, 47 | bitri 240 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (〈{p}, 〈{y}, 〈{x}, r〉〉〉 ∈ Ins4 SI3 I ↔ p = 〈y, x〉) |
| 49 | 48, 32 | anbi12i 678 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((〈{p}, 〈{y}, 〈{x}, r〉〉〉 ∈ Ins4 SI3 I ∧ 〈{p}, 〈{y}, 〈{x}, r〉〉〉 ∈ Ins2 Ins2 S ) ↔ (p =
〈y,
x〉 ∧ p ∈ r)) |
| 50 | 41, 49 | bitri 240 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (〈{p}, 〈{y}, 〈{x}, r〉〉〉 ∈ ( Ins4 SI3 I ∩ Ins2 Ins2 S ) ↔ (p =
〈y,
x〉 ∧ p ∈ r)) |
| 51 | 50 | exbii 1582 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (∃p〈{p}, 〈{y}, 〈{x}, r〉〉〉 ∈ ( Ins4 SI3 I ∩ Ins2 Ins2 S ) ↔ ∃p(p = 〈y, x〉 ∧ p ∈ r)) |
| 52 | | elima1c 4948 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (〈{y}, 〈{x}, r〉〉 ∈ (( Ins4 SI3
I ∩ Ins2 Ins2
S ) “ 1c) ↔ ∃p〈{p}, 〈{y}, 〈{x}, r〉〉〉 ∈ ( Ins4 SI3 I ∩ Ins2 Ins2 S )) |
| 53 | | df-br 4641 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (yrx ↔ 〈y, x〉 ∈ r) |
| 54 | | df-clel 2349 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (〈y, x〉 ∈ r ↔
∃p(p = 〈y, x〉 ∧ p ∈ r)) |
| 55 | 53, 54 | bitri 240 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (yrx ↔ ∃p(p = 〈y, x〉 ∧ p ∈ r)) |
| 56 | 51, 52, 55 | 3bitr4i 268 |
. . . . . . . . . . . . . . . . . . 19
⊢ (〈{y}, 〈{x}, r〉〉 ∈ (( Ins4 SI3
I ∩ Ins2 Ins2
S ) “ 1c) ↔ yrx) |
| 57 | 56 | notbii 287 |
. . . . . . . . . . . . . . . . . 18
⊢ (¬ 〈{y}, 〈{x}, r〉〉 ∈ (( Ins4 SI3
I ∩ Ins2 Ins2
S ) “ 1c) ↔ ¬
yrx) |
| 58 | 40, 57 | anbi12i 678 |
. . . . . . . . . . . . . . . . 17
⊢ ((〈{y}, 〈{x}, r〉〉 ∈ (( Ins4 SI3
Swap ∩ Ins2
Ins2 S ) “
1c) ∧ ¬ 〈{y}, 〈{x}, r〉〉 ∈ (( Ins4 SI3
I ∩ Ins2 Ins2
S ) “ 1c)) ↔
(xry ∧ ¬ yrx)) |
| 59 | 18, 19, 58 | 3bitri 262 |
. . . . . . . . . . . . . . . 16
⊢ (〈{y}, 〈{x}, 〈r, a〉〉〉 ∈ Ins4 ((( Ins4 SI3
Swap ∩ Ins2
Ins2 S ) “
1c) ∖ (( Ins4 SI3
I ∩ Ins2 Ins2
S ) “ 1c)) ↔
(xry ∧ ¬ yrx)) |
| 60 | 17, 59 | anbi12i 678 |
. . . . . . . . . . . . . . 15
⊢ ((〈{y}, 〈{x}, 〈r, a〉〉〉 ∈ Ins2 Ins2 S ∧ 〈{y}, 〈{x}, 〈r, a〉〉〉 ∈ Ins4 ((( Ins4 SI3 Swap
∩ Ins2 Ins2 S ) “
1c) ∖ (( Ins4 SI3
I ∩ Ins2 Ins2
S ) “ 1c))) ↔
(y ∈
a ∧
(xry ∧ ¬ yrx))) |
| 61 | 11, 60 | bitri 240 |
. . . . . . . . . . . . . 14
⊢ (〈{y}, 〈{x}, 〈r, a〉〉〉 ∈ ( Ins2 Ins2 S ∩ Ins4 ((( Ins4 SI3 Swap
∩ Ins2 Ins2 S ) “
1c) ∖ (( Ins4 SI3
I ∩ Ins2 Ins2
S ) “ 1c))) ↔
(y ∈
a ∧
(xry ∧ ¬ yrx))) |
| 62 | 61 | exbii 1582 |
. . . . . . . . . . . . 13
⊢ (∃y〈{y}, 〈{x}, 〈r, a〉〉〉 ∈ ( Ins2 Ins2 S ∩ Ins4 ((( Ins4 SI3 Swap
∩ Ins2 Ins2 S ) “
1c) ∖ (( Ins4 SI3
I ∩ Ins2 Ins2
S ) “ 1c))) ↔ ∃y(y ∈ a ∧ (xry ∧ ¬ yrx))) |
| 63 | | elima1c 4948 |
. . . . . . . . . . . . 13
⊢ (〈{x}, 〈r, a〉〉 ∈ (( Ins2 Ins2 S ∩ Ins4 ((( Ins4 SI3
Swap ∩ Ins2
Ins2 S ) “
1c) ∖ (( Ins4 SI3
I ∩ Ins2 Ins2
S ) “ 1c))) “
1c) ↔ ∃y〈{y}, 〈{x}, 〈r, a〉〉〉 ∈ ( Ins2 Ins2 S ∩ Ins4 ((( Ins4 SI3
Swap ∩ Ins2
Ins2 S ) “
1c) ∖ (( Ins4 SI3
I ∩ Ins2 Ins2
S ) “
1c)))) |
| 64 | | df-rex 2621 |
. . . . . . . . . . . . 13
⊢ (∃y ∈ a (xry ∧ ¬ yrx) ↔ ∃y(y ∈ a ∧ (xry ∧ ¬ yrx))) |
| 65 | 62, 63, 64 | 3bitr4i 268 |
. . . . . . . . . . . 12
⊢ (〈{x}, 〈r, a〉〉 ∈ (( Ins2 Ins2 S ∩ Ins4 ((( Ins4 SI3
Swap ∩ Ins2
Ins2 S ) “
1c) ∖ (( Ins4 SI3
I ∩ Ins2 Ins2
S ) “ 1c))) “
1c) ↔ ∃y ∈ a (xry ∧ ¬ yrx)) |
| 66 | | rexanali 2661 |
. . . . . . . . . . . 12
⊢ (∃y ∈ a (xry ∧ ¬ yrx) ↔ ¬ ∀y ∈ a (xry → yrx)) |
| 67 | 65, 66 | bitri 240 |
. . . . . . . . . . 11
⊢ (〈{x}, 〈r, a〉〉 ∈ (( Ins2 Ins2 S ∩ Ins4 ((( Ins4 SI3
Swap ∩ Ins2
Ins2 S ) “
1c) ∖ (( Ins4 SI3
I ∩ Ins2 Ins2
S ) “ 1c))) “
1c) ↔ ¬ ∀y ∈ a (xry → yrx)) |
| 68 | 10, 67 | anbi12i 678 |
. . . . . . . . . 10
⊢ ((〈{x}, 〈r, a〉〉 ∈ Ins2 S ∧ 〈{x}, 〈r, a〉〉 ∈ (( Ins2 Ins2 S ∩ Ins4 ((( Ins4 SI3 Swap
∩ Ins2 Ins2 S ) “
1c) ∖ (( Ins4 SI3
I ∩ Ins2 Ins2
S ) “ 1c))) “
1c)) ↔ (x ∈ a ∧ ¬ ∀y ∈ a (xry → yrx))) |
| 69 | 6, 68 | bitri 240 |
. . . . . . . . 9
⊢ (〈{x}, 〈r, a〉〉 ∈ ( Ins2 S ∩ (( Ins2 Ins2 S ∩ Ins4 ((( Ins4 SI3
Swap ∩ Ins2
Ins2 S ) “
1c) ∖ (( Ins4 SI3
I ∩ Ins2 Ins2
S ) “ 1c))) “
1c)) ↔ (x ∈ a ∧ ¬ ∀y ∈ a (xry → yrx))) |
| 70 | 69 | exbii 1582 |
. . . . . . . 8
⊢ (∃x〈{x}, 〈r, a〉〉 ∈ ( Ins2 S ∩ (( Ins2 Ins2 S ∩ Ins4 ((( Ins4 SI3
Swap ∩ Ins2
Ins2 S ) “
1c) ∖ (( Ins4 SI3
I ∩ Ins2 Ins2
S ) “ 1c))) “
1c)) ↔ ∃x(x ∈ a ∧ ¬ ∀y ∈ a (xry → yrx))) |
| 71 | | elima1c 4948 |
. . . . . . . 8
⊢ (〈r, a〉 ∈ (( Ins2 S ∩ (( Ins2 Ins2 S ∩ Ins4 ((( Ins4 SI3 Swap
∩ Ins2 Ins2 S ) “
1c) ∖ (( Ins4 SI3
I ∩ Ins2 Ins2
S ) “ 1c))) “
1c)) “ 1c) ↔ ∃x〈{x}, 〈r, a〉〉 ∈ ( Ins2 S ∩ (( Ins2 Ins2 S ∩ Ins4 ((( Ins4 SI3
Swap ∩ Ins2
Ins2 S ) “
1c) ∖ (( Ins4 SI3
I ∩ Ins2 Ins2
S ) “ 1c))) “
1c))) |
| 72 | | df-rex 2621 |
. . . . . . . 8
⊢ (∃x ∈ a ¬ ∀y ∈ a (xry → yrx) ↔ ∃x(x ∈ a ∧ ¬ ∀y ∈ a (xry → yrx))) |
| 73 | 70, 71, 72 | 3bitr4i 268 |
. . . . . . 7
⊢ (〈r, a〉 ∈ (( Ins2 S ∩ (( Ins2 Ins2 S ∩ Ins4 ((( Ins4 SI3 Swap
∩ Ins2 Ins2 S ) “
1c) ∖ (( Ins4 SI3
I ∩ Ins2 Ins2
S ) “ 1c))) “
1c)) “ 1c) ↔ ∃x ∈ a ¬ ∀y ∈ a (xry → yrx)) |
| 74 | | rexnal 2626 |
. . . . . . 7
⊢ (∃x ∈ a ¬ ∀y ∈ a (xry → yrx) ↔ ¬ ∀x ∈ a ∀y ∈ a (xry → yrx)) |
| 75 | 73, 74 | bitri 240 |
. . . . . 6
⊢ (〈r, a〉 ∈ (( Ins2 S ∩ (( Ins2 Ins2 S ∩ Ins4 ((( Ins4 SI3 Swap
∩ Ins2 Ins2 S ) “
1c) ∖ (( Ins4 SI3
I ∩ Ins2 Ins2
S ) “ 1c))) “
1c)) “ 1c) ↔ ¬ ∀x ∈ a ∀y ∈ a (xry → yrx)) |
| 76 | 75 | con2bii 322 |
. . . . 5
⊢ (∀x ∈ a ∀y ∈ a (xry → yrx) ↔ ¬ 〈r, a〉 ∈ (( Ins2 S ∩ (( Ins2 Ins2 S ∩ Ins4 ((( Ins4 SI3 Swap
∩ Ins2 Ins2 S ) “
1c) ∖ (( Ins4 SI3
I ∩ Ins2 Ins2
S ) “ 1c))) “
1c)) “ 1c)) |
| 77 | 5, 76 | bitr4i 243 |
. . . 4
⊢ (〈r, a〉 ∈ ∼ (( Ins2 S ∩ (( Ins2 Ins2 S ∩ Ins4 ((( Ins4 SI3 Swap
∩ Ins2 Ins2 S ) “
1c) ∖ (( Ins4 SI3
I ∩ Ins2 Ins2
S ) “ 1c))) “
1c)) “ 1c) ↔ ∀x ∈ a ∀y ∈ a (xry → yrx)) |
| 78 | 77 | opabbi2i 4867 |
. . 3
⊢ ∼ (( Ins2 S ∩ (( Ins2 Ins2 S ∩ Ins4 ((( Ins4 SI3
Swap ∩ Ins2
Ins2 S ) “
1c) ∖ (( Ins4 SI3
I ∩ Ins2 Ins2
S ) “ 1c))) “
1c)) “ 1c) = {〈r, a〉 ∣ ∀x ∈ a ∀y ∈ a (xry →
yrx)} |
| 79 | 1, 78 | eqtr4i 2376 |
. 2
⊢ Sym = ∼ (( Ins2 S ∩ (( Ins2 Ins2 S ∩ Ins4 ((( Ins4 SI3 Swap
∩ Ins2 Ins2 S ) “
1c) ∖ (( Ins4 SI3
I ∩ Ins2 Ins2
S ) “ 1c))) “
1c)) “ 1c) |
| 80 | | ssetex 4745 |
. . . . . 6
⊢ S ∈
V |
| 81 | 80 | ins2ex 5798 |
. . . . 5
⊢ Ins2 S ∈ V |
| 82 | 81 | ins2ex 5798 |
. . . . . . 7
⊢ Ins2 Ins2 S ∈
V |
| 83 | | swapex 4743 |
. . . . . . . . . . . . 13
⊢ Swap ∈
V |
| 84 | 83 | si3ex 5807 |
. . . . . . . . . . . 12
⊢ SI3 Swap
∈ V |
| 85 | 84 | ins4ex 5800 |
. . . . . . . . . . 11
⊢ Ins4 SI3
Swap ∈
V |
| 86 | 85, 82 | inex 4106 |
. . . . . . . . . 10
⊢ ( Ins4 SI3
Swap ∩ Ins2
Ins2 S ) ∈ V |
| 87 | | 1cex 4143 |
. . . . . . . . . 10
⊢
1c ∈
V |
| 88 | 86, 87 | imaex 4748 |
. . . . . . . . 9
⊢ (( Ins4 SI3
Swap ∩ Ins2
Ins2 S ) “
1c) ∈ V |
| 89 | | idex 5505 |
. . . . . . . . . . . . 13
⊢ I ∈ V |
| 90 | 89 | si3ex 5807 |
. . . . . . . . . . . 12
⊢ SI3 I ∈ V |
| 91 | 90 | ins4ex 5800 |
. . . . . . . . . . 11
⊢ Ins4 SI3
I ∈ V |
| 92 | 91, 82 | inex 4106 |
. . . . . . . . . 10
⊢ ( Ins4 SI3
I ∩ Ins2 Ins2
S ) ∈
V |
| 93 | 92, 87 | imaex 4748 |
. . . . . . . . 9
⊢ (( Ins4 SI3
I ∩ Ins2 Ins2
S ) “ 1c) ∈ V |
| 94 | 88, 93 | difex 4108 |
. . . . . . . 8
⊢ ((( Ins4 SI3
Swap ∩ Ins2
Ins2 S ) “
1c) ∖ (( Ins4 SI3
I ∩ Ins2 Ins2
S ) “ 1c)) ∈ V |
| 95 | 94 | ins4ex 5800 |
. . . . . . 7
⊢ Ins4 ((( Ins4 SI3 Swap
∩ Ins2 Ins2 S ) “
1c) ∖ (( Ins4 SI3
I ∩ Ins2 Ins2
S ) “ 1c)) ∈ V |
| 96 | 82, 95 | inex 4106 |
. . . . . 6
⊢ ( Ins2 Ins2 S ∩ Ins4 ((( Ins4 SI3
Swap ∩ Ins2
Ins2 S ) “
1c) ∖ (( Ins4 SI3
I ∩ Ins2 Ins2
S ) “ 1c))) ∈ V |
| 97 | 96, 87 | imaex 4748 |
. . . . 5
⊢ (( Ins2 Ins2 S ∩ Ins4 ((( Ins4 SI3
Swap ∩ Ins2
Ins2 S ) “
1c) ∖ (( Ins4 SI3
I ∩ Ins2 Ins2
S ) “ 1c))) “
1c) ∈ V |
| 98 | 81, 97 | inex 4106 |
. . . 4
⊢ ( Ins2 S ∩ (( Ins2 Ins2 S ∩ Ins4 ((( Ins4 SI3
Swap ∩ Ins2
Ins2 S ) “
1c) ∖ (( Ins4 SI3
I ∩ Ins2 Ins2
S ) “ 1c))) “
1c)) ∈ V |
| 99 | 98, 87 | imaex 4748 |
. . 3
⊢ (( Ins2 S ∩ (( Ins2 Ins2 S ∩ Ins4 ((( Ins4 SI3
Swap ∩ Ins2
Ins2 S ) “
1c) ∖ (( Ins4 SI3
I ∩ Ins2 Ins2
S ) “ 1c))) “
1c)) “ 1c) ∈ V |
| 100 | 99 | complex 4105 |
. 2
⊢ ∼ (( Ins2 S ∩ (( Ins2 Ins2 S ∩ Ins4 ((( Ins4 SI3
Swap ∩ Ins2
Ins2 S ) “
1c) ∖ (( Ins4 SI3
I ∩ Ins2 Ins2
S ) “ 1c))) “
1c)) “ 1c) ∈ V |
| 101 | 79, 100 | eqeltri 2423 |
1
⊢ Sym ∈
V |