New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > spc2ev | GIF version |
Description: Existential specialization, using implicit substitution. (Contributed by NM, 3-Aug-1995.) |
Ref | Expression |
---|---|
spc2ev.1 | ⊢ A ∈ V |
spc2ev.2 | ⊢ B ∈ V |
spc2ev.3 | ⊢ ((x = A ∧ y = B) → (φ ↔ ψ)) |
Ref | Expression |
---|---|
spc2ev | ⊢ (ψ → ∃x∃yφ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | spc2ev.1 | . 2 ⊢ A ∈ V | |
2 | spc2ev.2 | . 2 ⊢ B ∈ V | |
3 | spc2ev.3 | . . 3 ⊢ ((x = A ∧ y = B) → (φ ↔ ψ)) | |
4 | 3 | spc2egv 2942 | . 2 ⊢ ((A ∈ V ∧ B ∈ V) → (ψ → ∃x∃yφ)) |
5 | 1, 2, 4 | mp2an 653 | 1 ⊢ (ψ → ∃x∃yφ) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 176 ∧ wa 358 ∃wex 1541 = wceq 1642 ∈ wcel 1710 Vcvv 2860 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-6 1729 ax-7 1734 ax-11 1746 ax-ext 2334 |
This theorem depends on definitions: df-bi 177 df-an 360 df-ex 1542 df-nf 1545 df-sb 1649 df-clab 2340 df-cleq 2346 df-clel 2349 df-v 2862 |
This theorem is referenced by: opkabssvvk 4209 dfpw12 4302 pw1equn 4332 pw1eqadj 4333 dfxp2 5114 brtxp 5784 endisj 6052 mucnc 6132 ce0nnul 6178 cenc 6182 ce2 6193 |
Copyright terms: Public domain | W3C validator |