NFE Home New Foundations Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  NFE Home  >  Th. List  >  opkex GIF version

Theorem opkex 4114
Description: A Kuratowski ordered pair exists. (Contributed by SF, 12-Jan-2015.)
Assertion
Ref Expression
opkex A, B V

Proof of Theorem opkex
StepHypRef Expression
1 df-opk 4059 . 2 A, B⟫ = {{A}, {A, B}}
2 prex 4113 . 2 {{A}, {A, B}} V
31, 2eqeltri 2423 1 A, B V
Colors of variables: wff setvar class
Syntax hints:   wcel 1710  Vcvv 2860  {csn 3738  {cpr 3739  copk 4058
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1546  ax-5 1557  ax-17 1616  ax-9 1654  ax-8 1675  ax-6 1729  ax-7 1734  ax-11 1746  ax-12 1925  ax-ext 2334  ax-nin 4079  ax-sn 4088
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-nan 1288  df-tru 1319  df-ex 1542  df-nf 1545  df-sb 1649  df-clab 2340  df-cleq 2346  df-clel 2349  df-nfc 2479  df-ne 2519  df-v 2862  df-nin 3212  df-compl 3213  df-in 3214  df-un 3215  df-dif 3216  df-ss 3260  df-nul 3552  df-sn 3742  df-pr 3743  df-opk 4059
This theorem is referenced by:  elxpk  4197  ssrelk  4212  eqrelk  4213  opkelopkabg  4246  otkelins2kg  4254  otkelins3kg  4255  opkelcokg  4262  opkelimagekg  4272  ins2kss  4280  ins3kss  4281  sikexlem  4296  dfimak2  4299  insklem  4305  ins2kexg  4306  ins3kexg  4307  dfint3  4319  ndisjrelk  4324  dfaddc2  4382  nnsucelrlem1  4425  nndisjeq  4430  ltfinex  4465  eqpwrelk  4479  eqpw1relk  4480  ncfinraiselem2  4481  ncfinlowerlem1  4483  eqtfinrelk  4487  evenfinex  4504  oddfinex  4505  evenodddisjlem1  4516  nnadjoinlem1  4520  nnpweqlem1  4523  srelk  4525  sfintfinlem1  4532  tfinnnlem1  4534  spfinex  4538  dfop2lem1  4574  setconslem2  4733  setconslem3  4734  setconslem4  4735  setconslem7  4738  df1st2  4739  dfswap2  4742
  Copyright terms: Public domain W3C validator