NFE Home New Foundations Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  NFE Home  >  Th. List  >  iotassuni GIF version

Theorem iotassuni 4356
Description: The class is a subset of the union of all elements satisfying φ. (Contributed by Mario Carneiro, 24-Dec-2016.)
Assertion
Ref Expression
iotassuni (℩xφ) {x φ}

Proof of Theorem iotassuni
StepHypRef Expression
1 iotauni 4352 . . 3 (∃!xφ → (℩xφ) = {x φ})
2 eqimss 3324 . . 3 ((℩xφ) = {x φ} → (℩xφ) {x φ})
31, 2syl 15 . 2 (∃!xφ → (℩xφ) {x φ})
4 0ss 3580 . . 3 {x φ}
5 iotanul 4355 . . . 4 ∃!xφ → (℩xφ) = )
65sseq1d 3299 . . 3 ∃!xφ → ((℩xφ) {x φ} ↔ {x φ}))
74, 6mpbiri 224 . 2 ∃!xφ → (℩xφ) {x φ})
83, 7pm2.61i 156 1 (℩xφ) {x φ}
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3   = wceq 1642  ∃!weu 2204  {cab 2339   wss 3258  c0 3551  cuni 3892  cio 4338
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1546  ax-5 1557  ax-17 1616  ax-9 1654  ax-8 1675  ax-6 1729  ax-7 1734  ax-11 1746  ax-12 1925  ax-ext 2334
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-nan 1288  df-tru 1319  df-ex 1542  df-nf 1545  df-sb 1649  df-eu 2208  df-clab 2340  df-cleq 2346  df-clel 2349  df-nfc 2479  df-ne 2519  df-ral 2620  df-rex 2621  df-v 2862  df-sbc 3048  df-nin 3212  df-compl 3213  df-in 3214  df-un 3215  df-dif 3216  df-ss 3260  df-nul 3552  df-sn 3742  df-pr 3743  df-uni 3893  df-iota 4340
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator