New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > dmxpss | GIF version |
Description: The domain of a cross product is a subclass of the first factor. (Contributed by set.mm contributors, 19-Mar-2007.) |
Ref | Expression |
---|---|
dmxpss | ⊢ dom (A × B) ⊆ A |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 0ss 3580 | . . 3 ⊢ ∅ ⊆ A | |
2 | xpeq2 4800 | . . . . . . 7 ⊢ (B = ∅ → (A × B) = (A × ∅)) | |
3 | xp0 5045 | . . . . . . 7 ⊢ (A × ∅) = ∅ | |
4 | 2, 3 | syl6eq 2401 | . . . . . 6 ⊢ (B = ∅ → (A × B) = ∅) |
5 | 4 | dmeqd 4910 | . . . . 5 ⊢ (B = ∅ → dom (A × B) = dom ∅) |
6 | dm0 4919 | . . . . 5 ⊢ dom ∅ = ∅ | |
7 | 5, 6 | syl6eq 2401 | . . . 4 ⊢ (B = ∅ → dom (A × B) = ∅) |
8 | 7 | sseq1d 3299 | . . 3 ⊢ (B = ∅ → (dom (A × B) ⊆ A ↔ ∅ ⊆ A)) |
9 | 1, 8 | mpbiri 224 | . 2 ⊢ (B = ∅ → dom (A × B) ⊆ A) |
10 | dmxp 4924 | . . 3 ⊢ (B ≠ ∅ → dom (A × B) = A) | |
11 | eqimss 3324 | . . 3 ⊢ (dom (A × B) = A → dom (A × B) ⊆ A) | |
12 | 10, 11 | syl 15 | . 2 ⊢ (B ≠ ∅ → dom (A × B) ⊆ A) |
13 | 9, 12 | pm2.61ine 2593 | 1 ⊢ dom (A × B) ⊆ A |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1642 ≠ wne 2517 ⊆ wss 3258 ∅c0 3551 × cxp 4771 dom cdm 4773 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-13 1712 ax-14 1714 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 ax-ext 2334 ax-nin 4079 ax-xp 4080 ax-cnv 4081 ax-1c 4082 ax-sset 4083 ax-si 4084 ax-ins2 4085 ax-ins3 4086 ax-typlower 4087 ax-sn 4088 |
This theorem depends on definitions: df-bi 177 df-or 359 df-an 360 df-3or 935 df-3an 936 df-nan 1288 df-tru 1319 df-ex 1542 df-nf 1545 df-sb 1649 df-eu 2208 df-mo 2209 df-clab 2340 df-cleq 2346 df-clel 2349 df-nfc 2479 df-ne 2519 df-ral 2620 df-rex 2621 df-reu 2622 df-rmo 2623 df-rab 2624 df-v 2862 df-sbc 3048 df-nin 3212 df-compl 3213 df-in 3214 df-un 3215 df-dif 3216 df-symdif 3217 df-ss 3260 df-pss 3262 df-nul 3552 df-if 3664 df-pw 3725 df-sn 3742 df-pr 3743 df-uni 3893 df-int 3928 df-opk 4059 df-1c 4137 df-pw1 4138 df-uni1 4139 df-xpk 4186 df-cnvk 4187 df-ins2k 4188 df-ins3k 4189 df-imak 4190 df-cok 4191 df-p6 4192 df-sik 4193 df-ssetk 4194 df-imagek 4195 df-idk 4196 df-iota 4340 df-0c 4378 df-addc 4379 df-nnc 4380 df-fin 4381 df-lefin 4441 df-ltfin 4442 df-ncfin 4443 df-tfin 4444 df-evenfin 4445 df-oddfin 4446 df-sfin 4447 df-spfin 4448 df-phi 4566 df-op 4567 df-proj1 4568 df-proj2 4569 df-opab 4624 df-br 4641 df-ima 4728 df-xp 4785 df-cnv 4786 df-rn 4787 df-dm 4788 |
This theorem is referenced by: rnxpss 5054 ssxpb 5056 funssxp 5234 dff3 5421 dmfrec 6317 |
Copyright terms: Public domain | W3C validator |