NFE Home New Foundations Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  NFE Home  >  Th. List  >  sspwb GIF version

Theorem sspwb 4119
Description: Classes are subclasses if and only if their power classes are subclasses. Exercise 18 of [TakeutiZaring] p. 18. (Contributed by SF, 13-Oct-1996.)
Assertion
Ref Expression
sspwb (A BA B)

Proof of Theorem sspwb
Dummy variable x is distinct from all other variables.
StepHypRef Expression
1 sstr2 3280 . . . . 5 (x A → (A Bx B))
21com12 27 . . . 4 (A B → (x Ax B))
3 vex 2863 . . . . 5 x V
43elpw 3729 . . . 4 (x Ax A)
53elpw 3729 . . . 4 (x Bx B)
62, 4, 53imtr4g 261 . . 3 (A B → (x Ax B))
76ssrdv 3279 . 2 (A BA B)
8 ssel 3268 . . . 4 (A B → ({x} A → {x} B))
9 snex 4112 . . . . . 6 {x} V
109elpw 3729 . . . . 5 ({x} A ↔ {x} A)
113snss 3839 . . . . 5 (x A ↔ {x} A)
1210, 11bitr4i 243 . . . 4 ({x} Ax A)
139elpw 3729 . . . . 5 ({x} B ↔ {x} B)
143snss 3839 . . . . 5 (x B ↔ {x} B)
1513, 14bitr4i 243 . . . 4 ({x} Bx B)
168, 12, 153imtr3g 260 . . 3 (A B → (x Ax B))
1716ssrdv 3279 . 2 (A BA B)
187, 17impbii 180 1 (A BA B)
Colors of variables: wff setvar class
Syntax hints:  wb 176   wcel 1710   wss 3258  cpw 3723  {csn 3738
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1546  ax-5 1557  ax-17 1616  ax-9 1654  ax-8 1675  ax-6 1729  ax-7 1734  ax-11 1746  ax-12 1925  ax-ext 2334  ax-nin 4079  ax-sn 4088
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-nan 1288  df-tru 1319  df-ex 1542  df-nf 1545  df-sb 1649  df-clab 2340  df-cleq 2346  df-clel 2349  df-nfc 2479  df-ne 2519  df-v 2862  df-nin 3212  df-compl 3213  df-in 3214  df-un 3215  df-dif 3216  df-ss 3260  df-nul 3552  df-pw 3725  df-sn 3742
This theorem is referenced by:  pw1ss  4170  sfinltfin  4536  ce2le  6234
  Copyright terms: Public domain W3C validator